با وجود اینكه برخی ابزارهای microfluidics خیلی جدید نیستند ، با یك تحقیـق گـسترده متوجـه خـواهیم شـد كـه
میتوان microfluidics را در گروه علوم جدید قرار داد . بطور مشخص زمینه میكروپمپها یكی از شاخه های این علم
است كه مدتهاست مورد توجه میباشد . شروع آن اواسط 1970 بود كه گـسترش بـدون وقفـه و تنـوع شـگفت آوری در
اصول میكروپمپها ، مفاهیم تكنیكی و كاربردهای متنوع در این زمینه شكل گرفت . این روند ادامه داشـت تـا امـروز كـه
در علم MEMS
، روشهای نوین مدلسازی جریان ثابت ، مواد ریز سازه ، اصـول عملگرهـا ، تكنولـوژی سـاخت ، و 1
كاربردهای آنها ارائه میشود كه هنوز هم جهـت تحقیقـات در زمینـه میكروپمپهـا مـورد اسـتفاده قـرار میگیـرد . در میـان
پتانسیل های كاربردی موجود ، میتوان بطور خاص به كاربرد میكروپمپها در سنـسورهای بیوشـیمی و microfluidics
اشاره نمود كه اززمان گذشته انگیزه ای قوی جهت تحقیقات بوده و با توجه به اهمیـت آن در آینـده نیـز ایـن تحقیقـات
ادامه خواهد داشت .
تكنیك های مختلف ساخت میكرو بسیار متفاوت از تكنیك های ساختی هـستند كـه بـرای ماشـین هـای معمـولی بكـار
میگیریم . اگرچه برخی از تكنیك های ساخت سنتی و معمول را میتوان در packaging تولیدات میكرو سیستم هـا و
MEMS بكار گرفت . تكنولوژی موجود جهت ساخت MEMS و میكروسیـستمها را نمیتـوان از روشـهای سـاخت
مورد استفاده در میكروالكترونیك جدا نمود . این ارتباط نزدیك در ساخت میكروسیـستمها و میكروالكترونیـك اغلـب
باعث میشود تا مهندسین دچار این اشتباه شوند كه این دو روش كاملا قابل جایگزینی میباشند . توجه داریم كـه بـسیاری
از تكنیك های سـاخت میكروسیـستمها بـا تفـاوت انـدكی در سـاخت میكـرو الكترونیـك نیـز بكـار میرونـد . اگرچـه ،
چگونگی طراحی میكروسیستمها و همچنین packaging آن بطور كلی با آنچه د ر مورد میكروالكترونیك بكار میرود
، متفاوت است .
اغلب MEMS و میكروسیستمها شامل اجزای ظریفی به اندازه مرتبـه ای از میكرومتـر میباشـند . در صـورتی كـه ایـن
اجزاء به نحو مطلوبی package نشوند ، نسبت به كاركرد بد و یـا آسـیب پـذیری سـاختاری ، بـسیار حـساس میباشـند .
packaging قابـل اطمینـان ایـن لـوازم و سیـستمها رقـابتی عمـده در صـنعت میباشـد ، زیـرا تكنولـوژی packaging
میكروسیستمها ، در مقایسه با packaging در میكروالكترونیك به بلوغ نرسیده است . packaging میكروسیـستمها
، شامل سه موضوع سرهم نمودن ،packaging و تست كردن میباشد كه آن را با علامت اختصاری AP&T نمـایش
میدهند . در AP&T ، MEMS بالاترین بخش از كل هزینه ساخت را به خود اختصاص میدهد . به عنوان مثال هزینه
packaging نوعی خاص از میكروسنسورهای فشار برای كاربری در محیط های toxic با دماهای خیلی بالا حـدود
95 درصد از هزینه تولید را به خود اختصاص میدهد . نكته بسیار مهمی كه باید به آن توجه داشت این است كـه معمـولا
packaging منـشاء ایجـاد اغلـب مـشكلات در رابطـه بـا عـدم كـاركرد میكروسیـستمها میباشـد . بنـابراین تكنولـوژی
packaging یك فاكتور كلیدی در طراحی و ساخت و گسترش میكروسیستمها میباشد.
واقعیت شناخته شده این است كه روش IC packaging فقط بـرای محافظـت از چیـپ هـای سـیلیكونی و سـیمهای
متصل به اثرات محیط بكار میرود . از طرفی packaging میكروسیستمها نه تنها برای محافظت از اجزای ظریفـی چـون
قالب های سیلیكونی از محیط مخرب بكار میرود ، بلكه اجازه میدهد ا ین قالـب هـا بطـور همزمـان بـا محـیط در تمـاس
باشند. بنـابراین بـرای مهندسـان packaging میكروسیـستم بـسیار پـر زحمـت تـر از packaging میكروالكترونیـك
میباشد.
در بسیاری ازمیكروسیستمها از مواد مورد استفاده در میكروالكترونیك ها ، مثل سیلیكون ، گالیوم آرسنید بـرای سـاخت
المانهای سنسورها و یا عملگرها استفاده میشود . عمدتا این مـواد انتخـاب میـشوند زیـرا كـه از نظـر ابعـاد پایـدار بـوده و
تكنیك های ساخت و packaging آنها همانند میكروالكترونیـك میباشـد . اگرچـه ، مـواد دیگـری ماننـد كـوارتز،
پیركس ، پلاستیك و سرامیكها نیز برای تولید MEMS و میكروسیستمها بكار میروند كه معمولا در میكروالكترونیك
كاربرد ندارند. علاوه بر این تقریبا تمامی عملیات تكنیك های ساخت میكرو ، شامل بهبود فیزیكـی و شـیمیایی مـوادی
است كه اثرات آنها عموما برای بسیاری از مهندسین ناشناخته است چرا كه با تكنیك های ساخت معمولی آشنای ی دارند
.بنابراین برای مهندسین لازم است تا قبل از اقدام به طراحی و ساخت میكرو سیـستم هـا و MEMS اطلاعـات كـافی از
فیزیك حالت جامد و تكنیك های میكرو ساخت مرتبط كسب نمایند . دانستن چنین اطلاعاتی بسیار ضـروری اسـت تـا
یك مهندس بداند یك طرح ارایه شده قابل ساخت میباشد یا خیر.
:
دو وظیفه اساسی بخش تابشی كوره، احتراق سوخت و انتقال انرژی به سیال فرایند است . بـر حـسب ظرفیـت
كوره، كیفیت كوره،كیفیت سوخت، نوع طراحی و هزینه های كلی كوره، دو عمل مذكور مـی توانـد در یـك بخـش
مجزا ویا در دو بخش مجزا صورت گیرد. اگر ظرفیت كوره كم باشد یا كیفیت احتراقـی سـوخت نـازل باشـد، بـرای
جلوگیری از سرد شدن گازها قبل از تكمیل واكنشهای احتراق، در ابتـدا احتـراق در یـك محفظـه و سـپس انتقـال
حرارت در محفظه دیگر بوقوع می پیوندد.
تلفیق فرایندهای احتراق و انتقال حرارت در یك محفظه منفرد باعث پیچیدگی عملیات ك وره شده و مستلزم
تنظیم دقیق توزیع فلاكس حرارتی به سیال فرایند است.
اگر ظرفیت كوره زیاد باشد، تفكیك بخشهای احتراق و انتقال حرارت از نظر اقتصادی مقرون به صرفه نبـوده
و باعث ازدیاد مخارج كل می شود. بدین سبب در كوره های صنعتی عمل احتراق و انتقال حـرارت توامـاٌ در یـك
محفظه صورت می گیرد.
ایجاد مدل ریاضی برای پیش بینی متغیر های طراحی و عملیاتی در طی فرایندهای احتراق و انتقـال حـرارت
بسیار پیچیده بوده و عموماً تكیه بر تجارب عملی دقیق، نتایج رضایتبخشی را بدنبال دارد. بطور كلـی سـه مـدل در
طراحی كوره ها در نظر گرفته می شود:
الف- كوره طویل
ب- محفظه احتراق كاملاً یكنواخت
ج- روش منطقه ای
كه درفصلهای4-3-2 هر یك از این روشها بررسی می گردند.
كوره چیست ؟
كوره دارای تجهیزاتی است كه توسط آنها، درون یك محفظه عایق، حرارت ناشی از احتـراق سـوخت، بـه سـیال
فرایند منتقل می گردد. سیال فرایند در لوله هایی جریان دارد كـه عمومـاً در امتـداد جـداره هـا و سـقف محفظـه
احتراق نصب شده اند. عامل اصلی انتقال حرارت مكانیزم تشعشع می باشد.
وظیفه اصلی كوره، تامین حرارت معینی به سیال فرایند، تحت درجه حرارتهای بالا می باشد. این عمل بایـستی
بدون افزایش بیش از حد حرارت، در نقطه معینی از سیال و یا اجزاء بدنه كوره انجام شود. به عبارت دیگـر، حـرارت
باید حتی الامكان بصورت یكنواخت توزیع گردد.
:
بیماری های قلبی هر ساله در جهان تعداد زیادی از انسان ها را از بـین مـی بـرد . آمـار مـرگ و میـر بعلـت
مشكلات قلبی بسیار بیشتر از هر سانحه و یا اتفاق طبیعی است. این امر دلیـل اصـلی توسـعه فعالیـت هـای
علمی و پژوهشی در دانش پزشكی در زمینه بیماری های قلبی و گسترش وسیع و سریع آن در حـوزه سـای ر
علوم نظیر علوم مهندسی برای یافتن راه های موثر پیشگیری این دسته از بیماری ها می باشد .
جستجو و تحقیق در زمینه قلب به قرون وسطی و رنسانس باز می گردد، در ابتدا با قطعه قطعه كـردن قلـب
حیوانات و بررسی آناتومی آنها تحقیقات انجام شده و بدین ترتیب مدل های اولیـه از آنـاتومی و فیزیولـوژی
قلب بوجود آمدند كه امروزه با توجه به وسایل تحقیقاتی و سیستم های جدید و مدرن دیگـر قابـل اسـتفاده
نبوده. مدلسازی قلب منجر به تولید دانشی می شود كه به كمك آن می توان ارتباط دو جانبه میان سـاختار
قسمت های مختلف قلب و پدیده های فیزیكی مشاهده شده را مورد بحث و بررسـی قـرار داد . یـك كـاربرد
مدلسازی قلب در تحقیقات بیومدیكال، اطلاع از اتفاقات مكانیزم هایی اسـت كـه قلـب بواسـطه آنهـا دچـار
خرابی می گردد ، كه خرابی قلب برابر است با مرگ .
ECG1
می تواند بعنوان ابزاری پایه ای جهت تشـخیص اسـتفاده شـده و در برخـی از مـوارد بـرای مـدیریت
بیماری لازم و ضروری است. در بحث ریتم هـای غیـر طبیعـی قلبـی ، بمن ظـور انجـام تشـخیص و مـدیریت
2 بیماری، استخراج ECG ضروری می باشد. در عمل تفسیر ECG موضوع علم بازشناخت الگـو
اسـت ، لـیكن
ECG می تواند بر پایه تعداد كمی از قواعد و قوانین و حقایق مبنایی مورد آنالیز و بررسی قرار گیرد .
پزشكان برای بررسی و آنالیز سیگنال ECG با پرسش هایی روبرو هستند كه از جمله آنها می توان به مـوارد
ذیل اشاره كرد :
* آیا به اندازه كافی سیگنال برای تصمیم گیری جمع آوری شده است ؟
* احتمال تشخیص نادرست چقدر است ؟
* سیگنال مورد بررسی واقعاً با چه الگویی از بیمای حداكثر تطابق را دارد ؟
در حالت كلی برای آنكه به سوالات فوق پاسخی با دقت معین داده شود، محاسبات ریاضـی فراوانـی احتیـاج
بوده كه گاهی اوقات این محاسبات پیچیده و خسته كننده هستند. بنابرین طراحی الگوریتمی كه قابل پیاده
سازی در كامپیوتر بوده و بتواند به سوالات فوق با دقت مشخص پاسخ دهد، مفید خواهد بود.
:
کاویتاسیون یکی از پدیده های مهم در زمینه هیدرودینامیک است که بخصوص اخیراً مورد
توجه بسیار قرار گرفته است. یکی از اثرات مهم کاویتاسیون، تاثیر بر روی درگ وارده به اجسام
رونده در مایعات است. تحقیقات وسیعی در حوزه عملی و نظری در خصوص کاویتاسیون و اثرات
آن (مخرب یا سودمند ) در توربوماشین ها و به ویژه در کاربردهای دریایی انجام شده است. یکی
از کاربردهای کاویتاسیون که عموماً در حالت ایجاد سوپرکاویتی حول اجسام رخ می دهد، در
زمینه کاهش نیروی درگ وارده به اجسام است. امروزه این زمینه تحقیقاتی که در کاهش سوخت
، افزایش سرعت متحرك و پاکیزگی محیط زیست موثر است ، رو به گسترش می باشد .
تا حدود سه دهه پیش کاویتاسیون به عنوان پدیده ای مخرب شناخته شده
بود و تمام تلاشها بر این بود که بتوان از بوجود آمدن آن جلوگیری کرد . اما
ناگهان نگاه ها به این پدیده عوض شد و از این پدیده برای کاهش درگ
هیدرودینامیکی وارد بر اجسام متحرك در داخل آب استفاده شد .امروزه توانایی
رسیدن به سرعت 100m/s در زیر آب با استفاده از این روش وجود دارد.
سوپرکاویتی را هم به صورت طبیعی و هم به صورت مصنوعی می توان ایجاد
نمود . برای بوجود آمدن سوپرکاویتی بصورت طبیعی، نیاز به کاهش فشار مایع در
بر گیرنده جسم جامد می باشد . کنترل بر روی این فشار را می توان به دو
طریق اعمال نمود . این دو روش، افزایش سرعت نسبی بین جسم جامد و مایع
محیط و یا کاهش فشار وارده بر کل محیط که جسم جامد و مایع محیط آن در
آن واقع شده است، می باشد . برای بوجود آوردن سوپرکاویتی بصورت مصنوعی
لازم است که در پشت جسم جامد، گازی تزریق شود که به فشار مایع اطراف
جسم رسیده باشد . با تغییر دبی گاز تزریق شده می توان سوپر کاویتی مشابه با
تمام اعداد کاویتاسیون موجود بدست آورد.
تئوری لایه مرزی، کاربرد خود را بیشتر در محاسبه دراگ پوسته ای به نمایش میگذارد که بر روی یک
جسم متحرک درون یک مایع اثر می گذارد. به عنوان چند مثال، میتوان به پدیده دراگ آزمایش شده
توسط یک صفحه مسطح در زاویه برخورد صفر، پدیده دراگ درون یک کشتی، یا بال یک هواپیما، و یا
درون تیغه های یک توربین اشاره نمود. جریان لایه مرزی، دارای رفتارهای ویژه ای است که تحت شرایط
خاص، جریان در همسایگی بسیار نزدیک به جسم جامد در جهت مخالف ادامه می یابد، که باعث جدائی
لایه مرزی از بدنه جسم میشود. این پدیده، معمولا همراه با شکل دهی به جریانهای گردابی کوچک در
همسایگی بدنه جسم جامد است. بنابراین، توزیع فشار تغییر می یابد و بطور قابل توجهی با توزیع فشار در
حالتی که اصطکاک وجود ندارد، متفاوت است. این انحراف از حالت ایده آل در توزیع فشار، باعث ایجاد
حالت دراگ میشود، و محاسبه آن توسط تئوری لایه مرزی قابل انجام است.
تئوری لایه مرزی پاسخهای مناسبی برای سوال زیر بدست آورده است: جسم جامد باید دارای چه شکلی
باشد تا حالت جدائی رخ ندهد؟ پدیده جدائی میتواند همچنین در یک جریان داخلی موجود در یک کانال
رخ دهد و تنها محدود به جریانهای خارجی سیال عبوری از روی یک جسم جامد نمی شود. همچنین مسائل
مربوط به انتقال گرما بین یک جسم جامد و سیالی که در اطراف آن در جریان است، در حیطه تئوری لایه
مرزی، و قوانین حاکم بر پدیده های مکش و دمش و دراگ، قابل بررسی است.
در ابتدا، تئوری لایه مرزی برای بررسی حالت جریان آرام در یک سیال تراکم ناپذیر توسعه یافت. در این
حالت، فرضیه پدیده شناسی برای تنش برشی، از قبل به شکل قانون استوکس وجود دارد. این قانون آنچنان
مورد آزمایش، بررسی و توسعه قرار گرفت که اکنون میتوان مسائل وابسته به جریانهای آرام را بطور کامل از
طریق این قانون و توسعه های آن بررسی و حل نمود. بعدها این قانون آنچنان توسعه یافت که بتواند حالات
جریانهای درهم با لایه های مرزی تراکم ناپذیر را نیز در بر گیرد، که اینگونه مسائل، از دیدگاه کاربردی
دارای اهمیت بیشتری هستند. تئوری طول اختلاط پراندتل در سال 1925 به همراه آزمایشات متعدی که
انجام گرفت، پیشرفت بزرگی در حل مسائل وابسته به جریانهای درهم در تئوری لایه مرزی بوجود آورد. در
زمانهای بعد، تمرکز آزمایشها و تحقیقات در لایه مرزی، بیشتر بر روی جریانهای تراکم پذیر بوده است، که
بخش بزرگی از انگیـزه موجود در پشت این تحقیقات، نیاز برای دست یابی به سرعتهای بسیار بالا در
هواپیماهای مافوق صوت، و در سیستمهای موشکی، و ماهواره ها بوده است. بعلاوه، در لایه های مرزی
سرعتی فوق، مسئله ایجاد لایه مرزی گرمائی و اثرات شدید آن بر انتقال گرمای بین جسم جامد و سیال در
حال جریان اطراف آن، مطرح است. در سرعتهای بالای اعداد ماخ، سطح بدنه جسم جامد دارای دمای فوق
العاده بالایی می گردد که بعلت وجود اثر گرمای اصطکاکی(حصار گرمائی) میباشد.