:
اصطلاح WPC یا کامپوزیت های چوب – پلاستیک بـه دو گـروه متفـاوت از مـواد مرکـب
اطلاق می شود. در گروه اول مونو مر در داخل چوب با روش های متداول اشباع چـوب تزریـق شـده و
پلیمریزاسیون مونومر با استفاده از روش های مختلف به انجام می رسد. مـاده حاصـل دارای ظـاهری
مانند چوب با دانسیته و ثبات ابعاد بیشتری بوده و خواص مکانیکی آن از چوب بهتر است .در گـروه
دوم اختلاط مذاب پلیمرهای گرمانرم و چوب که می تواند به صورت پودر یا الیاف کوتاه باشد در یک
سیستم اختلاط انجام می شود. ماده حاصل بیشتر شبیه پلاسـتیک بـوده و در گـروه پلاسـتیک هـای
تقویت شده طبقه بندی می شود. پلیمرهای پلی وینیـل کلرایـد،پلی اتـیلن و پلـی پـروپیلن و الیـاف
طبیعی نظیر پودر چوب، ک تان، کنف، باگاس، پوسته برنج و غیره در ساخت اینگونه مواد کـامپوزیتی
مورد استفاده قرار می گیرند. این دسته از مواد زمانی متولـد شـدند کـه بحـث بازیافـت کیـسه هـای
پلیاتیلن مطرح شد و گروهی از محققین به تولید کامپوزیتهای پلی اتیلن بازیافتی با چـوب اقـدام
نمودند. همچنین با توجه به محدودیت های ایجاد شده توسـط سـازمان محـیط زیـست جهـانی، در
ارتباط با کاهش قطع درختان و استفاده از منابعی با دوره تجدیدپذیری کوتاه، استفاده از محصولات
جانبی صنایع دیگر از جلمه کارخانه های چوب بری و تولید مبلمان مثل پودر چوب مورد توجـه قـرار
گرفت. پیش از آن خرده چوب های بازیافتی یا پودر چوب همراه با چـسب بـرای کاربردهـای خـاص
مانند نئوپان یا نئوپان با دانسیته متوسط استفاده میگردید.
پیشینه تحقیق
ازجمله مزایای کامپوزیت های چوب پلاستیک میتوان به قیمت پایین، سفتی و مقاومت ویژه بـالا،
دانسیته پایین، تجدیدپذیری الیاف وتخریبپذیری کامپوزیت اشاره نمود [1،2].
کامپوزیت های چوب پلاستیک از الیاف سلولزی به عنوان پرکننده های تقویتی در ماتریس پلیمری
استفاده می کنند ، بنابراین تنش های وارده بر روی مواد کامپوزیتی از طریق فـصل مـشترك مـابین
ماتریس و الیاف به الیاف تقویتی، انتقال می یابد که سبب افزایش چقرمگی و استحکام می شود.این
در حالیستکه خواص مقاومتی پایین ،دانسیته و شـکنندگی بـالا از رسـیدن ایـن مـواد بـه پتانـسیل
عملکردی واقعیشان جلوگیری به عمل می آورد [3]. کمپانی های تولید کننده کامپوزیت های چوب
پلاستیک به پلاستیک به عنوان یک ماده مطلوب که دارای خواصی که چـوب فاقـد آن مـی باشـد ،
(برای مثال مقاومت در برابر رطوبت و حشرات ) نگاه می کنند . فرایند کاران پلاستیک به چـوب بـه
عنوان یک ماده در دسترس و پرکننده نسبتا ارزان که مـی توانـد باعـث کـاهش قیمـت محـصول ،
افزودن چقرمگی و سرعت اکستروژن در تولید پروفیل (چـون چـوب نـسبت بـه پلاسـتیک سـریعتر
خنک می شود ) می گردد ، نگاه می کنند .خواص مکانیکی مثل مقاومـت، سـختی، مقاومـت ضـربه،
دانسیته و رنگ مهمترین فاکتورهای مورد توجـه در کاربردهـای کامپوزیـت هـای چـوب پلاسـتیک
میباشد کاربردهای مختلف، خ واص و ویژگیهای مورد نیاز خود را میطلبد.
:
پلی الفین ها ، پلیمرهای مناسب و ارزان قیمتی هستند كه خواص مناسبی دارا می باشـند ولـیكن تعـداد
آنها اندك بوده و خواص مكانیكی مناسبی ندارند لذا به منظور تقویت خواص آنها تدابیری توسط محققین
اندیشیده شده است كه شامل تقویت، كوپلیمریزاسیون و آلیاژسازی مـیباشـد. روش كوپلیمریزاسـیون بـا
موفقیت انجام گرفت، اما از لحاظ مسایل اقتصادی، تولید كوپلیمرهای جدید با مشكل روبرو بود. لذا روش
دیگر كه برای بهبود خواص مواد پلیمری مورد توجه قرار گرفت، اختلاط دو یا چند پلیمر و سـاخت آلیـاژ
پلیمری میباشد. آلیاژسازی شامل اختلاط عمدتاً فیزیكی دو یا چند پلیمر با یكدیگر میباشـد كـه در اثـر
این اختلاط خواص آلیاژ نسبه به پلیمرهای اولیه بهتر مـی باشـد. امـروزه آلیاژهـای پلیمـری %16 از كـل
مصرف پلیمرها را تشكیل میدهد. نرخ رشد متوسط مصرف آلیاژهای پلیمری دو برابر نـرخ رشـد مصـرف
پلیمرهای معمولی است و حتّی برای آلیاژهای پلیمری مهندسی با كارآیی بالا، این رقم به سـه برابـر هـم
میرسد. بطور كلی مهمترین دلایل اصلی آلیاژسازی پلیمرها كه جنبه اقتصادی دارند عبارتند از:
1- كاهش قیمت تمام شده محصول از طریق اختلاط آن با یك پلیمر ارزان قیمت
2- تهیه و تولید موادی با كلیه خواص مورد نظر
3- تولید مواد با كارآیی بالا از طریق تولید پلیمرهایی كه بر هم كنش هم افزا (Synergistic) دارند.
4- استفاده مجدد و بازیافت مواد پلیمری
5- تنظیم تركیب و خواص آلیاژ براساس نیاز مشتری
با استفاده از فرآیند آلیاژسازی به پلیمرهای دست یافته شده است كه دامنه خواص وسیعی دارنـد كـه مـی
توان بعضا از انها در كاربردهای مهندسی هم استفاده نمود. پلی پـروپیلن و پلـی اتـیلن پركـاربردترین پلـی
الفین ها هستند كه با آلیاژسازی مـی تـوان در صـنایع مختلـف از آنهـا اسـتفاده نمـود. پیشـرفت علمـی و
اقتصادی در زمینه آلیاژهای پلیمری طی دو دهه اخیر بسیار زیاد بوده است. علت این امـر در آن اسـت كـه
اولاً پلیمرهای موجود هیچ گاه تمامی خواص مورد نظر را در خود ندارنـد و همـواره در كنـار مزایـای آنهـا،
معایبی نیز وجود دارد، ثانیاً مولكولهای جدید پلیمری همواره نیاز به مواد جدید با خواص معـین را بـرآورد
نمیسازند. همچنین اختلاط مواد موجود میتواند سریعتر و اقتصادیتر از تولید یك مونومر جدید باشد.
بدلیل همین جذابیت ها است كه 97% مقالات در دهه اخیر به بحث در مورد آلیاژهـا مـی پـردازد.ایـن امـر
نشان دهنده عمق فواید آلیاژسازی و مزایای گسترده آن دارد.در ادامه به روش هـای مختلـف آلیاژسـازی و
پارامترهای تاثیر گذار در این حوزه می پردازیم.
علوم و تکنولوژی پلیمرها طی چند دهه اخیر گسترش و توسعه یافته اسـت. ایـن توسـعه ابتـدا فقـط
محدود به تولید مونومرهای جدید بود، اما با پیشرفت تکنولوژی در زمینههای متفاوت، موارد کاربردی
زیادی حاصل شد بطوریکه پلیمرهای تولید شده هیچکدام به تنهایی قابلیت کاربردی لازم را نداشتند.
همچنین تولید مونومرهای جدید مستلزم کار آزمایشگاهی و تحقیقاتی طـولانی و طراحـی روشهـای
تولید صنعتی جدید میباشد، که فرایندی بسیار وقتگیر و هزینهبر میباشد. روشهای دیگری کـه در
این زمینه مطرح گردید شامل تقویت، کوپلیمریزاسیون و آلیاژسازی میباشد. روش کوپلیمریزاسیون با
موفقیت انجام گرفت، اما از لحاظ مسایل اقتصادی، تولید کوپلیمرهای جدید با مشکل روبرو بـود. لـذا
روش دیگر که برای بهبود خواص مواد پلیمری مورد توجه قرار گرفـت، اخـتلاط دو یـا چنـد پلیمـر و
ساخت آلیاژ پلیمری میباشد. آلیاژسازی شامل اختلاط عمدتاً فیزیکی دو یـا چنـد پلیمـر بـا یکـدیگر
میباشد که در اثر این اختلاط خواص ویژهای از آلیاژ حاصل بهبود مییابد.به عنـوان مثـال مـی تـوان
اختلاطPVCخالص با ذرات لاستیکی را ذکر کرد که در نتیجه آن آلیاژی چقرمه حاصـل مـی گـردد.
امروزه آلیاژهای پلیمری %16 از کل مصرف پلیمرها را تشکیل میدهد. بطـور کلـی مهمتـرین دلایـل
اصلی آلیاژسازی پلیمرها که جنبه اقتصادی دارند عبارتند از:
1- کاهش قیمت تمام شده محصول از طریق اختلاط آن با یک پلیمر ارزان قیمت
2- تهیه و تولید موادی با کلیه خواص مورد نظر
3- تولید مواد با کارآیی بالا از طریق تولید پلیمرهایی که بر هم کنش هم افزا (Synergistic) دارند.
4- استفاده مجدد و بازیافت مواد پلیمری
5- تنظیم ترکیب و خواص آلیاژ براساس نیاز مشتری
همانطوریكه میدانیم مبنای كار دستگاههای مكانیكی بر حركت نهاده شده است در این دستگاهها
مكانیزمهای متعددی برای تولید ، انتقال و تبدیل حركت وجود دارد . برای هر یك از موارد مذكور مكانیزمهای
ویژهای وجود دارد كه با لحاظ كردن شرایط كاری، صرفه اقصادی و منبع انرژی موجود برگزیده میشود.
موتورهای الكتریكی، موتورهای احتراق داخلی و توربینها از انواع تولید كنندههای حركت میباشند. اما برای
انتقال و تبدیل قدرت معمولاً از شفت، تسمه، زنجیر و چرخنده استفاده میشود كه چرخدنده ها و یا مجموعه آنها
كه گیربكس نامیده میشود از اهمیت خاصی برخوردار است بدلیل آنكه انتقال و تبدیل قدرت در آن كامل، بدون
لغزش, كم حجم و دارای قابلیت اطمینان بالائی است. لذا در دورها و گشتاورهای بالا به راحتی قابل استفاده
است.
از جمله موارد مصرف چرخدندهها میتوان از گیربكس و دیفرانسیل اتومبیل، تبدیل دور در توربینها گیربكس
آسانسور و دیگر ماشینآلات صنعتی نام برد.
از طرفی برای ساخت دستگاههای میكرومكانیكی مانند ساعت، ویدئو و دوربینهای ویدئوئی بكارگیری
چرخدندهها میكرومتری رایج شده است.
طراحی پیشرفته مكانیك، برای هر چه كوچكتر كردن چرخدندهها و گیربكس بدلیل نیاز اقتصادی صنایع به
صرفهجویی، در بكاربری مواد و هزینه تولید و ایجاد ارزش افزوده بیشتر در مقایسه با مصرف مواد اولیه، و نیز كم
حجمتر و سبكتر شدن قطعات مكانیكی بدلیل امكان استفاده از انرژی كمتر بمنظور مدنظر قرار دادن مسائل
زیست محیطی، كار برد روزافزونی رسیده است. تا چرخدندههای كوچك با دقت و دارای عمر مشخص تولید
گردد. بعبارتی در طراحی بهینه نه عمر بینهایت مطلوب است و نه عمر كوتاه بلكه عمر بهینه در محدوده زمان
مصرف دستگاه هدف طراحی امروزی میباشد. ایده قدیمی ساخت اتومبیلها و دستگاههای مكانیكی با عمرهای
طولانی جای خود را به خودروها و دستگاههای كوچك و جمع و جور امروزی داده كه عمر كمتر از ده سال دارند
و مصرف هر نوع موادی در این دستگاهها در حداقل ممكن است میباشد.
پیزو سرامیکها با وجود قابلیتهای بسیار زیاد و کاربردهای گسترده ای که دارنـد، ماننـد همـۀ مـواد
هوشمند معایبی هم دارند مثلا کرنش (مربوط به حرکت عملگر) که بوسیلۀ یک پیزو الکتریک معمـول
ایجاد میشود، عموما خیلی کوچک است. (در حد چند میکرون) و باید با بکار بـردن در یـک سـاختار
تقویت شود تا بتوان مقدار کار مناسبی را تولید نمودco- extrusion افـزایش مقـدار جابجـایی بـه
قیمت افزایش مقدار نیرو تمام میشود که در پیزو سرامیک به مقدار زیاد دیده میشود ولـی متاسـفانه
آنچه موجب تقویت مقدار جابجایی میشود همچنین موجب کاهش قابلیـت اطمینـان در عملگـر نیـز
خواهد شد. عموما برای ایجاد یک ساختار ، لایههای متصل به هم در عملگر ایجاد میکنیم که مستعد
ایجاد جدایی بین لایه ای (delamination)و نیز تمرکز تنش بالا در ماده است. این شرایط میتواند
موجب تخریب ناگهانی در وسیلۀ پیزو سرامیک شود که باعث میشود قطعـه از نظـر تجـاری مناسـب
نباشد. اگر چه همچنان کاربردهای تجاری زیادی هستند که از قابلیتهای پیزو سـرامیکهـا اسـتفاده
میکنند، محدودیتهای این مواد قابل حذف میباشد.
با اینکه حرکت و قابلیت اطمینان همچنان یـک مسـئله اساسـی اسـت، پیشـرفتهـایی کـه در پیـزو
سرامیکها و روشهای ساخت آنها ایجاد شده میتواند مشکلات بسیار را حل کند.
به عنوان مثال قابلیتهای پیزو سرامیکهایی با خواص تابعی یا مواد (Functionally graded piezoceramics)
بدلیل عدم وجود سطوح تمـاس در آن و گرادیـان
خواص پیوسته میتواند انقلابی در زمینۀ تولید پیزو سرامیکها محسوب میشود. زیـرا مشـکلات ذکـر
شده از نوع تمرکز تنش وایجاد جدایی در لایهها در آن اتفاق نمـی افتـد وقابلیـت اطمینـان مناسـبی
خواهد داشت. بنابراین میتواند در مصارف تجاری مورد استفاده قرار گیرد. این متن به توضیح این نوع
از پیزو سرامیکها و خواص و روش ایجاد گرادیان و فرآیند تولید مواد Functionally graded)
(FGP) piezoceramics)می پردازد.
تعداد صفحه :70
قیمت : شش هزار تومان