وبلاگ

توضیح وبلاگ من

موضوع: "بدون موضوع"

سمینار ارشد مهندسی برق قدرت: استفاده از ادوات FACTS برای بهبود پایداری ولتاژ در شبکه ای با نیروگاه بادی


مسائل پایداری، پیوستگی عمیقی با موضوعات قابلیت اطمینان، برنامه ریزی، بهینه سازی و حتی کیفیت توان در سیستم قدرت دارند. مسئله پایداری دارای جنبه های مختلفی است که از این میان، ناپایداری ولتاژ به عنوان یک معضل نسبتا جدید، گریبان گیر سیستم های قدرت امروزی است و از آنجا که وجود اغتشاشات، به خاطر خطای انسانی یا عوامل طبیعی، یک واقعیت اجتناب ناپذیر است، بروز ناپایداری ولتاژ ناشی از یک اغتشاش اولیه، باعث خاموشی های متعددی در شبکه های کشورهای مختلف شده است.
وقوع چند خاموشی وسیع در آمریکا و اروپا از جمله این وقایع است. در 14 آگوست 2003 (اواسط مرداد) یک حادثه خروج متوالی تجهیزات انتقال و تولید در سیستم به هم پیوسته شرق آمریکای شمالی منجر به خاموشی بیشتر بخش های ایالت نیویورک و قسمت هایی از پنسیلوانیا، اوهایو، میشیگان و انتاریوی کانادا شد. این خاموشی آمریکایی – کانادایی، تقریبا 50 میلیون نفر را در 8 ایالت آمریکا و 2 استان کانادا تحت تاثیر قرار داد. 63 گیگاوات بار قطع شد که تقریبا 11 درصد کل بار تأمین شده در این سیستم است. حین این اتفاق، 400 خط انتقال و 531 واحد تولیدی در 261 نیروگاه قطع شدند. بررسی های بعدی نشان داد این حادثه از نوع ناپایداری ولتاژ بوده است. ساعاتی

پایان نامه

 قبل از وقوع این حادثه، مشکل تامین توان راکتیو در بعضی مناطق به وجود آمده بود.

نرم افزارهای تخمین حالت و آنالیز بلادرنگ پیشامد، اطلاعات کافی از حوادث در حال وقوع فراهم می کنند و ارزیابی «هشدار زود هنگام» را انجام می دهند. این نرم افزارها قبل از حادثه فوق و در طی آن دچار مشکل بودند.
تولید بادی را می توان به عنوان یکی از منابع تولید پراکنده دانست. تولید پراکنده به تمام واحدهای تولید با حداکثر ظرفیت 50 تا 100 مگاوات گفته می شود که معمولا به شبکه توزیع متصلند و به طور مرکزی برنامه ریزی یا توزیع نمی شوند.
گزارشات اخیر حاکی از این است که تولید بادی در دنیا در سال های اخیر سریع ترین رشد را در بین منابع تولید برق تجربه می کند. سیستم انتقال دانمارک غربی یک مورد واقعی از یک سیستم قدرت بادی بزرگ است.
در ایران نیز با گسترش بازار برق و وجود مناطق بادخیز مناسب و سند چشم انداز 20 ساله توسعه کشور، الحاق مزارع باد بیشتر دور از انتظار نیست و هم اکنون بخش خصوصی برای احداث چند نیروگاه بادی اقدام کرده است. در سال 2008، 17 مگاوات به ظرفیت نصب شده کشورمان اضافه شده و مجموعا به 85 مگاوات در انتهای سال رسیده است.
هدف این پروژه بررسی تاثیر نیروگاه های بادی بر حد بارپذیری و پایداری ولتاژ گذرای یک سیستم قدرت و راهکارهای مختلف موجود برای بهبود مشکلات ناشی از آنها و تاثیر عوامل مختلف مثل پارامترهای کنترل و نوع و محل نصب تجهیزات پشتیبانی توان راکتیو است. هرچند تمرکز اصلی بر روی مسائل مربوط به توربین های سرعت ثابت است، اما از مزایای توربین های نسل جدید که مجهز به ادوات الکترونیک قدرت هستند، نیز استفاده شده است.
ریشه مشکلات ناشی از نیروگاه های بادی را می توان در چند دسته قرار داد. اول متغیر و غیرقابل پیش بینی بودن سرعت باد، دوم ناتوانی نیروگاه های باد در تأمین توان راکتیو و سوم قرار گرفتن مزارع باد در قسمت های ضعیف شبکه و دور از مراکز بار.
در فصل اول، مسئله پایداری ولتاژ به همراه علل و راه حل های آن مطالعه شده و زمینه هایی که اخیرا در مراجع مورد توجه قرار گرفته معرفی شده است.
در فصل دوم، انواع توربین های باد و مشکلات مربوط به آنها از منظر شبکه و از منظر توربین مورد توجه قرار گرفته است و راه حل های موجود معرفی شده در مراجع، ارائه شده است.
فصل سوم، به توصیف ادوات FACTS به عنوان جبران سازهای دینامیک پرداخته و سیستم های ذخیره انرژی را به عنوان زیر شاخه ای از این تجهیزات معرفی کرده است.
در فصل چهارم، با هدف کشف تأثیر کیفیت اتصال به شبکه بر کار یک ژنراتور القایی و برای درک عمیق عملکرد یک ماشین القایی، منحنی های تغییرات کمیات مختلف الکتریکی نسبت به لغزش در شرایط متفاوت رسم شده است.
در فصل پنجم با ارائه نتایج مطالعه استاتیک و شبیه سازی حوزه زمان، انواع روش های موجود برای ارتقای پایداری ولتاژ گذرای یک سیستم ضعیف، با یک مزرعه باد سرعت ثابت موجود، مورد بحث قرار گرفته و یک تکنیک جدید و مقرون به صرفه با تکیه بر استانداردهای بروز شده سیستم های دارای تولید بادی، ارائه شده است.
نهایتا در فصل ششم به کمک نتایج شبیه سازی به نتیجه گیری پرداخته شده است.

پایان نامه(سمینار) کارشناسی ارشد مهندسی برق مخابرات: شبکه های رادیو ترانک TRTRA


ترانك (Trunk) كانالی كه یك یا دو طرفه است كه به منظور تامین شریانی مشترك بین ادوات سوئیچینگ قرار داده می شود. سیستم رادیویی ترانك شده (Trunked) سبك علمكردی است كه در آن تعدادی جفت كانال فركانس رادیویی به ایستگاه های پایه ثابت و واحدهای سیار جهت استفاده به عنوان یك گروه ترانك، اختصاص می یابند سیستم های سیار زمینی متعارف نیز روی یك یا چند كانال فركانس رادیویی عمل می كنند ولی به صورت یك گروه ترانك شده بكار برده نمی شوند بطور كلی سیستم های متعارف به شیوه دستی بین كانالها سوئیچ می شوند ولی در سیستم های ترانك شده این عمل به صورت خودكار صورت می گیرد برای سازمانهایی كه مخابرات سریع (به مفهوم دیگر آنی) موثر و اختصاصی، بخش عمده ای از فعالیت های روزمره آنها محسوب می شود سیستم رادیویی دو طرفه ترانك شده، پوشش، كارآیی فركانس، امنیت و انعطاف پذیری مورد نیاز را تامین می نماید.
عملیات ترانكینگ به تعداد زیادی كاربر این اجازه را می دهد تا تعداد نسبتاً كمی مسیر مخابراتی (یا ترانك ها) را به صورت اشتراكی مورد استفاده قرار دهند كاربرد اشتراكی مسیرها به صورت خودكار و توسط رایانه مدیریت می گردد. گزینش كانال و سایر تصمیم گیری هایی كه به طور معمول توسط كاربران سیستم انجام می شوند به وسیله یك كنترل كننده مركزی (سوئیچ

دانلود مقاله و پایان نامه

 

مبتنی بر كامپیوتر) هدایت می گردد. بدین ترتیب دقیقاً مشابه یك تلفن عادی تنها كافی است كه كاربر رادیو را برداشته و صحبت كند تخصیص كانال نیز به صورت خودكار انجام می پذیرد.
سیستم رادیو ترانك، علاوه بر ایجاد یك سیستم مخابراتی رادیویی متحرك، قابلیتهای جدیدی را در اختیار كاربران قرار می دهد اگر یك سیستم رادیو ترانك با سیستم تلفن خودكار موبایل (MATS) مقایسه شود، اختلافات زیر قابل مشاهده خواهند بود.
الف – ارتباط در ساده ترین حالت، با فشردن یك دگمه برقرار می گردد.
ب – ارتباط سلولها در زمان های بسیار كوتاه (حداقل 1/5 تا 3/5 ثانیه) برقرار می شود.
ج – یك خط ارسال كننده قادر است مستقیماً مانند یك ایستگاه كنترل اصلی عمل نماید.
د – ایستگاه های موبایل در حالت یك طرفه كار می كنند در حالی كه ایستگاه های اصلی رادیویی در حالت دو طرفه انجام وظیفه می نمایند.
افزودن بر نكات فوق یك مشخصه اصلی سیستم رادیو ترانك، انتقال اطلاعات (Data) علاوه بر انتقالات رادیویی مانند اطلاعات موقعیت یا پیام های متنی (Text) می باشد.
ملزومات طرحی سیستم و پیش بینی فرآیند انتشار رادیویی جهت سیستم های سیار زمینی متعارف و ترانك شده مشابهند از آن رو كه هر دو معمولاً از ایستگاه های پایه منفرد استفاده نموده و به حداكثر برد ارتباطی عملی نیازمندند بنابراین نخست ی بر مبانی شبكه های عام سلولی می نمائیم.

سمینار ارشد مهندسی برق قدرت: اثرات تولید پراکنده (DG) در صنعت برق امروز

:
به طور خلاصه منابع تولید پراکنده (Dispersed-Generation) را می توان به عنوان منابع تولید توان الکتریکی که به شبکه های فوق توزیع و یا توزیع و یا به مصرف کننده های محلی متصل می شود تعریف کرد. این نیروگاهها عموماً ظرفیت تولید کمی به نسبت به ژنراتورهای بزرگ متصل به شبکه دارند. ولی به دلیل مزایا و کاربردهای خاص خود مورد توجه واقع شده است. در سالهای اخیر که تحولی در ساختار

پایان نامه

 صنعت برق صورت گرفته و باعث شده است که کم کم سیستم های قدرت از ساختار سنتی به ساختار جدید با مالکیت خصوصی روی آورند اهمیت این گونه تولید به دلایل مختلفی از جمله زمان نصب و بهره برداری کوتاه هزینه نصب کم و راندمان بالا و… بیشتر شده است.

تحقیقات انجام گرفته به وسیله مؤسسه EPRI نشان می دهد که تا سال 2010 ، نزدیک به 25 درصد از تولیدات برق، توسط نیروگاههای تولید پراکنده انجام خواهند گرفت که این رقم طبق تحقیقات Natural Gas Faundation تا 30 درصد نیز پیش بینی شده است.
وزارت انرژی آمریکا (Department of Energy)، تولید پراکنده را استراتژی قرن 21 می داند و این براهمیت این مسأله می افزاید منابع تولید پراکنده عمدتاً به شبکه های توزیع و یا فوق توزیع متصل می شوند و از آنجایی که این شبکه ها بصورت شعاعی هستند و کل شبکه بعد از پست فوق توزیع به عنوان یک مدار غیرفعال در نظر گرفته شده است. و در طراحی، امکان اتصال یک ژنراتور یا مولد در نظر گرفته نشده است. و همزمان با نصب واحدهای تولیدی کوچک (تولید پراکنده)، این شبکه ها به شبکه های فعال تبدیل می شوند، لذا نصب تولیدات پراکنده در سمت بار یا در طول فیدر فشار متوسط، تأثیر قابل توجهی بر توان عبوری، ولتاژ نقاط مختلف و… خواهد داشت. این تأثیرات می تواند در جهت بهبود وضعیت شبکه و یا عکس آن باشد و بنابراین باید قبل از نصب تآثیر آن را بر روی پروفیل ولتاژ- جریان خطوط- جریان اتصال کوتاه – قابلیت اطمینان پایداری گذرای سیستم، حفاظت سیستم، پایداری دینامیکی و… بررسی نمود.
همانطور که می دانید، هر سیستمی در کنار مزایای خود معایبی هم دارد و شبکه تولید پراکنده هم از این قاعده مستثنی نیست و از آنجایی که کشورهای جهان و نیز کشور ما، بسوی این گونه تولیدات پیش می روند، بررسی معایب و مزایای این سیستم می تواند مفید واقع شود.

سمینار ارشد برق قدرت: مدار امپدانسی Z-SOURCE INVERTER


روش های بسیاری جهت بالا بردن کیفیت توان و همچنین کنترل ولتاژ هم از لحاظ جلوگیری از تغییرات ناخواسته و هم تغییر خواسته کاربرد یافته است.

مداری دیگر برای کنترل ولتاژ که یک مدار امپدانس است با نام z-source موجود است که مشخصه های بهترین نسبت به کنترلرهای دیگر می تواند ارائه کند و در تمام انواع مبدل ها اعم از dc-ac و dc-dc و ac-dc و ac-ac و در اینورترها در هردو حالت ولتاژی و جریانی می 

دانلود مقاله و پایان نامه

تواند به کار رود.

این مدار در اصل واسطه ای بین منبع و مبدل می باشد و مزیت مشترکی را برای تمام مبدل های در مقایسه با مبدل های ولتاژی و یا جریانی تجاری (معمولی) که محدودیت های در کاربردشان وجود دارد به وجود می آورند. برای معرفی از کوپل اینورتر و z-source استفاده می کنیم.
همانطور که در شکل 2-1 و 1-1 مشاهده می کنید از یک اینورتر با 6 سوئیچ و دیودهای مربوط به آنها و یک خازن بزرگ یا سلف بزرگ (بسته به نوع ولتاژی یا جریانی) به عنوان ذخیره انرژی و منبعی که با آن موازی است (در شکل 2-1 سلف با منبع جریان سری است) استفاده شده است.
دیودها همانطور که می دانیم در اینورتر ولتاژی به صورت موازی با سوئیچ ها و در اینورتر جریانی به صورت سری با سوئیچ ها بسته می شوند که وظیفه آنها هدایت جریان عقب افتاده و جلوگیری از ایجاد ولتاژ معکوس در دو سر سوئیچ ها در اینورتر ولتاژی، و وظیفه آنها در اینورتر جریانی ایجاد ولتاژ و جلوگیری از جریان معکوس در سوئیچ ها می باشد.
i) محدودیت های اینورترهای ولتاژ تجاری (معمول و موجود):
1- ولتاژ ac کمتر از ولتاژ ریل dc می باشد و ولتاژ ac کمتر از ولتاژ dc ورودی می شود. بنابراین اینورترهای ولتاژ یک مدار buck نیز هستند و کاهش دهنده ولتاژ می باشند و برعکس مبدل های dc به ac یک مدار boost هستند و افزایش دهنده سطح ولتاژ می باشند.
هنگامی که نیاز به درایو بالا باشد (افزایش ولتاژ) با توجه به محدودیت ریل dc نیاز به اضافه نمودن مدار بوست dc به dc برای افزایش ولتاژ dc ورودی و به همین ترتیب خروجی ac مورد نیاز می باشد که این تجهیز اضافی باعث افزایش هزینه و غیره می شود که بعدا معایب مدارهای باک و بوست گفته خواهد شدو
2- سوئیچ های بالایی و پایین هر شاخه یا هر فاز آن طوری که مورد دلخواه ماست نمی توانند به دلیل وجود نویز EMI (نویز الکترومغناطیس داخلی که باعث عدم سوئیچ شدن به موقع می شود) در هر لحظه و پشت سرهم کلیدزنی شود در این حالت (کلیدزنی پشت سرهم) وقوع اتصال کوتاه بین پایه های بالایی و پایین و از بین رفتن ادوات می گردد. و همچنین باعث از بین رفتن مبدل می شود. Dead time زمانی است که برای هر دو ادوات بالایی و پایینی برای مقابله با این پدیده در نظر می گیرند که متعاقبا باعث از میان رفتن و اغتشاش شکل موج و پدید آوردن هارمونیک ها می گردد.

پایان نامه ارشد رشته برق کنترل: بررسی روش های مختلف کنترل دور و موقعیت موتور DC

:
كنترل امروزه یكی از پركاربردترین علوم در زمینه های صنعتی، پژوهشی نظامی و… می باشد. براین اساس انواع كنترل كننده های مختلف با كاربردهای مختلف و كارایی های متفاوت طراحی و تولید شده اند،كه هر كدام از این كنترل كننده ها در یك زمینه خاص مورد استفاده وسیع دارند. مهمترین و عملی ترین كنترل كننده های مورد استفاده در فرآیندهای صنعتی بدون شك كنترل كننده های PID هستند. این كنترل كننده ها عملكرد بسیار مهمی دارند بعضی آنها كنترل فیدبك ایجاد می كنند و سعی می كنند با پیروی از مقادیر مرجع، یك سیگنال

پایان نامه

 كنترلی كه متناسب با اختلاف بین مرجع و خروجی سیستم است تولید كنند. این كنترل كننده دارای سه قسمت تناسبی، انتگرالگیر، مشتق گیر می باشند كه هر قسمت عملیات مربوط به خود را انجام می دهد.

فصل اول
موتورهای DC و كنترل آنها
در این فصل به دلیل آنكه بحث اصلی سمینار در مورد موتورهای DC می باشد در موتور اعمال كنترل كه بر روی موتورهای DC انجام می شود بحث می كنیم.
1-1- روابط موتور DC
مدار معادل آرمیچر در شكل زیر نشان داده شده است.
در این مدار معادل داریم:
Va: ولتاژ اعمال شده به طرف پایانه های آرمیچر
Ia: جریان آرمیچر
Ra: مقاومت آرمیچر
Ea: ولتاژ القا شده در سیم پیچ آرمیچر (نیروی ضد محركه)
با توجه به شكل بالا داریم:
Va=Ea + Ra.Ia
اگر شار حاصله توسط هر قطب استاتور φf باشد در این صورت نیروی ضد محركه Ea از رابطه زیر محاسبه می شود.
Ea =kI .φf.w
كه در این رابطه w سرعت محور موتور است.
در لحظه راه اندازی كه موتور در حال سكون است Ea صفر است لذا طبق رابطه (1) جریان آرمیچر در لحظه راه اندازی بسیار زیاد است (Ra كوچك است) و ممكن است باعث سوختن سیم پیچ آرمیچر گردد. لذا در راه اندازی موتورهای DC باید از روش های خاصی استفاده كرد كه به موتور ضربه وارد نشود.

 
مداحی های محرم