منظوراز پیشرانه ها[4] ،یک مخلوط شیمیایی است که شامل سوخت (احیا شونده) و اکسنده میباشد، پیشرا نه ها از جمله (مایع،ژل،هیبرید) به عنوان پیشرانه های دوجزیی[5] یاد می شوند و عموماً پیشرا نه ها را به همین نام می شناسند و از این رو کمتر به نام پیشرا نه های تک جزیی[6] تلقی می شوند.
قابل ذکر است که لغت (PROPELLANT)، ازریشه ای (PROPEL) گرفته شده و به معنای حرکت دادن شی ءمی باشد.
پیشرا نه های موشکی (مایع،ژل،هیبرید) به دلیل طبیعی بودن شان ،ماده های پر انرژی هستندکه این عامل آنها را مخاطره آمیز می سازد. در بین پیشرا نه ها ، پیشرا نهای مایع دسته مهمی از پیشرانه های موشکی است که این امر بد لیل ویژگیهایی ، نظیر :ایمپا لس ویژه بالا ،قابلیت خاموش کردن و روشن کردن های مکرر موتور وامکان تغییر تراست ، امکان سرد کردن محفظه احتراق توسط پیشرا نه و….، می باشد که هنوز موشکهای مایع سوز در پروژه های موشکی و حمل ماهواره ،در بین سیستم های موشکی حرف اول می زند.
شایان ذکر است که محرکۀ راکت پیشرانه های مایع در حدود1 میلیون پوند نیرو تولید می کنند وبه همین خاطر موتورپیشرانه های مایع نسبت به موتور پیشرانه های جامد به مراتب دارای قدرت بیشتری است.ولی موتور سیستم های مایع سوز نسبت به موتور موشکهای سوخت جامد پیچید گی های بیشتری دارد ولذا هزینه تمام شده برای ساخت سیستم مایع سوز معمولاً بیشتر از سیستم های با سوخت جامد است.
پیشرا نهای مایع ،سیالهای عاملی[7]برای موتور های راکت می باشند.زمانی که این پیشرا نهادر محفظه احتراق راکت میسوزند ،تولید نیروی پیشران( تراست[8] )می کنند و بعد ازآن گازهای داغی البته باسرعت بسیار زیاد از دماغۀ انتهایی (نازل) موشک خارج می شود.
قریب به 80 سال گذشته،محققان برای استفاده از پیشرا نه ها الگو ومعیار خاصی را نداشتند،واز این رو ازآنها به طور گسترده در دامنه وسیعی از زمینه های نظامی و فضایی استفاده می کردند.بطور مثال بعد از دهه ها تجربه عملی در سالهای بسیارپیشین ،یک ترکیب پیشرانه دوجین[9] (دو گانه)برای پیشرا نش موتورراکت بوجو دآمد که در آن سالها مورد توجه محققان علوم فضایی بوده است .مانند: (اسید نیتریک [10]واسید نیتریک قرمز دود کننده[11]) که جزء اکسنده ها می باشند بعد ها جای خودشان را به اکسنده های جدید نظیر(تترا اکسید نیتروژن[12]، پر اکسید هیدروژن[13]) دادند وهم چنین ،می توان گفت که بعضی از سوخت ها امروزه از آنها در عرصه کارهای نظامی ودفاعی استفاده نمی شود به مانند:اتر/ گازوییل، تولوئن ،که آنها از این رو جای خودشان را به سوخت های جدید نظیر(RP-1 )،دی متیل هیدرازین نا متقارن[14] دادند.
علی رغم اینکه در همه پیشرا نه ها، یک رابطه و یا هما هنگی خاصی بین کیفیت خوب و کیفیت بد آنها وجود دارد ، این امر باعث می شود که این موادشیمیایی ازهمدیگر متمایز شوند. به این دلیل امروزه دانشمندان برای استفاده از هر پیشرانه محدویت ها و معیارهای را در نظر گرفته و مورد تست های آزمایشگاهی قرار داده اند تا مناسب ترین پیشرانه را کشف کنند تا بیشترین ایمپالس ویژه[15] (ISP) که مهمترین پارامتر در ارزیابی های پیشرانه های برتر است را داشته باشند.
بیشتر ین ارزیابی ها توسط محققان در بین سالهای (1965تا 1933) انجام شده اند به طوری که، درکلیه کشور ها (1800تا2000) نوع پیشرا نه های مختلف تحت بررسی های آزمایشگاهی قرار گرفته اندوبیش از 300نوع ترکیب پیشرا نها دو گانه در محفظه های تراست کوچک تست شده اند.به طوری که درکشور هایی مانند: شوروی ،که تعداد نامعلومی از آنها بین سالهای(1945تا1970) بدست آمدند ودرآمریکا تقریباً 1300نوع پیشرانه بین سال های (1936 تا1970) شنا خته شده بودند.
برای سا بقۀ پیشرانه های خود مشتعل این طور می توان گفت،که درسال 1936کلمۀ Hypergolic برای سوخت خود مشتعل،توسط یک محقق آلمانی Dr.Noeggerath ارائه شد واینکه تاکنون تعدادی زیادی پیشرانه های خود مشتعل در کشور های مختلف از سالهای ( 1933تا1970 ) مورد بررسی و استفاده قرار گرفته اند.
در این سمینار سعی شده است که انواع پیشرا نه ها و دسته بندی آنها شرح داده شود واینکه انواع اکسنده هاو سوخت های مایع را معرفی
کرده و هم چنین خاصیت های شیمیایی و فیزیکی آنها ونکته آخر پارامتر های اسا سی و کلیدی در تحلیل مناسبترین پیشرا نها وروند توسعه این گونه موادشیمیایی را مورد تحلیل و بررسی قرار دهیم.
فصل اول : پیشرا نه های مایع
1-1- تاریخچه پیشرا نه های مایع
سابقه ی پیشرانه های مایع وتکنولوژی راکت این نوع پیشرانه ها ، به سومین دهۀ قرن 20 برمی گردد به طوری که در سال 1898 یک معلم روسی به نام) Tsiolkovsky.Konstantin.E) ایده اکتشاف فضایی بوسیله موشک راپیشنهاد داد.او درسال 1926 موفق به ساخت و به پرواز درآوردن اولین موشک پیشرانه مایع گردید که این موشک که از اکسیژن مایع[16] وبنزین بعنوان پیشرانه استفاده میکرد واز این رو ،او اولین کسی بود که معادله بنیادی پرواز موشک وهم چنین پوروپزال[17] آن رانوشت. بعد از آن (Hermannoberth ) آلمانی با یک نظریه ریاضی آن معادله را بسط داد و همگام با این عمل،
(Robert H.Goddard ) اولین موتور پیشران مایع در سال 1926 به پرواز درامد.
تحقیقات برای ساخت موشکهای با پیشرا نه ها مایع ادامه یافت تا اینکه منجر به ساخت اولین موشک نظامی (V-2) درآلمان گردید . این موشک از پیشرانه ای متشکل از اکسیژن مایع و اتیل الکل[18] استفاده می کرد.این موشک در سال 1942 عملاً توسط آلما نها وارد جنگ شد.لذا اولین پیشرانه مایعی که بطورجدی در راکت های مایع سوز استفاده شد اتیل الکل به همراه اکسیژن مایع بود. ضربه ویژه این پیشرانه با الکل 75درصد در موشک(V-2) برابر 198 ثانیه بود اما در موشک( B2A) که از الکل 95 درصد استفاده شد،ایمپالس ویژه 241ثانیه بدست آمد.نکته قابل ذکر در مورد خانواده الکل ها این است که با تمام تغییرات در میزان غلظت الکل ها ،ضربه ویژه حاصله بسیار پایین بود ،لذا این سوخت کنار گذاشته بود.
حال در این قسمت گریزی به تاریخچۀ پیشرا نه های مایع کشور های مختلف می زنیم وسابقه آنها را مورد بررسی قرار می دهیم:
تاریخچه پیشرا نه مایع در آمریکا: در سال 1923 ، شخصی به نام Robert.H.Goddard اولین موتور پیشرا نه مایع با استفاده از اتر واکسیژن مایع ساخت اما بعد از مدتی جای این پیشرا نه را گازوییل/ اکسیژن مایع گرفت . Goddard اولین کسی بود که راکتی با پیشرانه مایع به فضا پر تا پ کرد.
در سال 1930 آزمایشگاه هوانوردی و درجه داری موسسه تکنولوژی آمریکاییGALCIT)) [19] ازاسید نیتریک به عنوان (اکسنده) وسوخت هیدرو کربنی یا الکل (سوخت) و به دنبال آن از آنیلین[20] به عنوان سوخت هم استفاده می کردند. و همچنین در (GALCIT)،پژوهشگران ترکیب (آنیلین ، اسید نیتریک) را در سال 1940 بصورت پیشرانه خود مشتعل یافتند.البته قابل ذکر است که دانشمندان فضایی و نظامی آمریکا در ناسا اولین پیشرانه خود مشتعل ،خود رادر سال1940 یافتند. تاریخچه پیشرا نه مایع در آلمان:یکی از پیشگامان قدیمی در عرصه پیشرا نه های مایع در آلمان ،(Hermann Oberth )است که او کارهای تحقیقاتی خویش را از سال 1930 آغاز کرد.
(Otto Lutz ) یکی دیگر از پیشگامان فضایی است که در سالهای (1945 تا 1935) یعنی در طی سال های جنگ جهانی دوم وحتی قبل از آن، ترکیبات مختلفی از پیشرانه های خود مشتعل که به بیش از 1100 نوع میرسد، از قبیل آلدهید،سیکلو پنتادین[21]،الکل فور فورال[22] ،و…، رامورد تحقیق و بررسی قرار دادند.بطوری که اولین پیشرانه خود مشتعل خود را درسال (1936) کشف کرده اند. همچنین این دانشمند تحقیقاتی در مورد منو پیشرانه ها انجام داده است وبعد از مدت اندکی به سمت پیشرانه های دوجزیی متمایل شد. وترکیب بسیاری از سوخت ها با پر اکسید هیدروژن (80 درصد)واسید نیتریک،را مورد بررسی قرار داد.
در آلمان شرکت ، هایی از جمله: شرکت (Helmuth water) وجود دارد که قدم نویی را در رابطه با پیشرا نه ها برداشته است و از این رو پیشرانه جدیدی به نام (C-Stoff )که مخلوطی از ترکیب:{ هیدرازین هید رات[23](30 در صد) ومتیل الکل[24](57 درصد) وآب (13 درصد)} به عنوان سوخت وهم چنین اکسنده این ترکیب به نام ((T-Stoff که شامل ( پر اکسید هیدروژن غلیظ شده ) می باشد را ساخته است.در سال های پیشین، در آلمان از تترا اکسید نیتروژن وگازوییل(نفت گاز)، برای موتور های با پیشرا نه مایع استفاده می کردند.
آقای Warmke اولین کسی بود که در جهان، در کشور آلمان در شهر Penem nda سعی کرد،که یک مخلوطی از تولید کند ولی زمانی که این ترکیب پیشرانه منفجر شد به مرگ او منجر شد.ولی بعداز این واقعه تلخ، در حدود 50 نوع از تک پیشرانه ها را دانشمندان آلمانی در یک محفظه تراست کوچک (TC)آتش زا مورد تحقیق و پژوهش قرار گرفته اندکه ما در این قسمت تعداد محدودی از آنها را نام می بریم .از قبیل:نیترو متان،اکسید اتیلن،مخلوطی از نیترو گلیسرین الکل هاو…. می باشد. قابل توجه است که در آلمان همۀ پیشرانه ها فوق الذکردراین سال های اخیر کنار گذاشته شده اند.چون این پیشرانه های تک جزیی فوق تولید انفجار شدیدی {چه با وجودعامل خارجی از جمله (ضربه ،گرما،اصطحکاک)و چه با نا خالصی درآنها} می کردند.
تاریخچه پیشرا نه مایع درژاپن: از سال 1935 اولین پیشرانه مایع در این کشور مورد بررسی قرار گرفته است که این پیشرا نه شامل (اکسیژن مایع/ الکل) بوده است. ولی به دلیل خاصی ،استفاده از این پیشرانه در سال 1939 متوقف شد.
در سال 1944 ،صنایع سنگین میستویشی[25] اولین موتور پیشرا نه مایع به نام (Tokuro-1)را ساخت و برای پیشرا نه آن، از پیشرانه تک جزیی به نام پراکسید هیدروژن با محلول کا تالیست (پر منگنات سدیم -آب)، استفاده کرد.
این شر کت بزرگ ژاپنی در سال 1960،از یک پیشرانه قابل نگه داری در موشک های هواشناسی[26] استفاده می کردند.هم چنین در این شر کت کروسین[27](سوخت)/اسید نیتریک یااکسیژن مایع به عنوان یک ترکیب پیشرانه مورد بررسی قرار داده اند.
در ژاپن از کروسین (سوخت)/ اکسیژن مایع در شاتل فضایی (Space Vehicle Launch) استفاده می شده است.
تاریخچه پیشرا نه مایع در بریتانیا:برنا مه این کشور درباره پیشرا نه های مایع در بین سال های (1947تا1971) می باشد. به طوری که انگیزه والگوی این کشورازبرنامه هاو تست های انجام شده درشرکت آلمانی به نام شرکت (Helmuth walter ) روی موتور(V-2) با استفاده از پیشرانه پراکسید هیدروژن، در پایان جنگ جهانی دوم گرفته شده است. .بریتانیا درسال های قبل از 1945 یعنی در طی جنگ جهانی دوم، روی پیشرانه {گازوییل(نفت گاز)/اکسیژن مایع رقیق شده باآب }،وبا یک فندک یا (شعله مستقیم) در موتور(Lizzy ) بررسی هایی انجام داده است.
در سال 1946، محققان بریتانیایی روی پیشرا نه پراکسید هیدروژن با غلظت بالای(90 درصد) و به دنبال آن الکل/اکسیژن مایع , هم چنین روی هیدرازین وآب آزمایشاتی وتحقیقاتی را در سیستم پیشرانش موشکی انجام داده ا ند.
در سال 1960 روی پیشرا نها ی(اکسیژن مایع/ هیدروژن مایع)کارهای تحقیقاتی انجام داده اندوالبته این روند روی منوپیشرانه های قابل نگه داری وپیشرانه های دو گانه خود مشتعل از جمله: / مخلوط سوخت های آمین،تترا اکسید نیتروژن/ هیدرازین[28] یا منو متیل هیدرازین[29]، ادامه پیدا کرده است.
تاریخچه پیشرا نه مایع در هند:روند پیشرا نه مایع درهند از سال 1980 شروع شد در آغاز این امر،از پیشرانه های قابل نگه داری منو متیل هیدرازین/ تترا اکسید نیتروژن ا ستفاده کرده است. هم چنین از سال 1989 کار برروی پیشرانه(اکسیژن مایع/ هیدروژن مایع) آغاز شده وتاکنون ادامه دارد.
تاریخچه پیشرا نه مایع درفرا نسه:کشور فرانسه تاریخ برجسته ای در رابطه با پیشرانه های مایع دارند. Robert Esnault .Pelterie اولین شخصی است که بین سالهای (1881-1957) در عرصه پیشرانه های مایع پیشگام می باشد.او برای اولین بار درسال 1931،با پیشرانه تک جزیی از نوع تترا نیترو متان کار کرد ولی بخاطر مخاطرات این نوع پیشرانه، آن را کنار گذاشت و دربین سالهای (1940- 1945) به سمت پیشرانه های دو گانه (اتر/ اکسیژن مایع) رفت.در سالهای پیشین، فرانسه هیدرازین باآب رقیق شده یا هیدرات هیدرازین،رابه جای هیدرازین خالص در بسیاری ازموتورها ی با پیشرانه مایع استفاده می کرده است که امروزه ،موتورهای(Viking) با پیشرانه دیگری به نام دی متیل هید رازین نا متقارن درعرصه پیشرانش موشکی استفاده می شود.
<p><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">از آنجا که لرزش های ناشی از انفجارمی تواند اثرات مخربی بر روی پیت معدن,سایت معدنی,تجهیزات ,ساختمان ها و حتی پرسنل معدن داشته باشد.لذا ضروری است تا تدابیری اندیشیده شود تا ضمن خردایش مطلوب کمترین میزان لرزش در انفجارات به وجود آید. در این پروژه با استفاده از داده های ثبت شده در انفجارهای معدن شماره 1 سنگ آهن گل گهر سیرجان در طی چندین ماه و روش شبکه های عصبی مصنوعی مدلی جهت بهینه سازی عملیات آتشباری با تاکید بر کاهش میزان لرزش های فعلی ارائه شد.</span></p><p><p><a href="http://33s.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%da%a9%d8%a7%d8%b1%d8%
تکه هایی از متن به عنوان نمونه :
(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
چكیده
از آنجائیکه قوسهای افقی جزء مهمترین اجزای طرح هندسی راهها میباشند و بطور گسترده در نقاط مختلف جادههای کشور مورد استفاده قرار میگیرند و از طرفی در بسیاری از موارد، محل قرار گیری این قوسها در تلاقی با محل قرارگیری شیبها و قوسهای قائم میباشد در این تحقیق با استفاده از نرم افزار Truck SIM که امروزه یکی از کامل ترین و پرکاربرد ترین برنامههای شیبهسازی حرکات وسایل نقلیه سنگین میباشد، ابتدا به مدلسازی حرکت دو نوع متفاوت از انواع کامیون (1-کامیون جامدار(Dump truck) 2-کامیون مفصل دار wb-15) در طول حرکت بر روی قوس های افقی ساده و معکوس با شیب طولی صفردرصد ، و تعیین شتاب جانبی[1] این وسایل نقلیه می پردازیم.سپس مدلسازی را بر روی قوس های افقی یادشده که در ترکیب با شیبها و قوس های قائم قرار خواهند گرفت ادامه داده و دراین حالت نیزمقادیر شتاب جانبی را تعیین می کنیم.
در انتها ضمن مقایسه شتاب های جانبی بدست آمده در دو حالت قوس افقی بدون شیب و شیبدار و اصلاح روابط تعیین حداقل شعاع قوس افقی موجود در آیین نامه های رایج طرح هندسی راه ها ، مقادیر افزایش شعاع لازم در قوس های سه بعدی(قوس افقی در ترکیب با قوس قائم) را از طریق تحلیل نتایج خروجی در برنامه SPSSتعیین می نمائیم.
کلمات کلیدی : قوس سه بعدی،وسیله نقلیه طرح،شتاب جانبی، مدلسازی، شبیه ساز Truck SIM
1-1- تعریف كلی مسأله
طراحی هندسی راه باتوجه به ایجاد هماهنگی میان اجزای آن كاری دشوار است؛ این اجزا شامل عناصری مانند سرعت طرح- عرض شانه-
قوسهای افقی[2]- شیبهای طولی – شیبهای عرضی- عرض آزاد- عرض خط عبور- ابنیه فنی- قوسهای [3]- حداقل فاصله دید توقف- بر بلندی و ارتفاع آزاد میباشند، كلیه عوامل ذكر شده از نوع معیارهای اجباری در طراحی هندسی راه میباشند[1].
مهمترین هدف یك طرح هندسی دقیق، امنیت بالا و بیخطر بودن طرح با تكیه بر هماهنگی دقیق میان اجزای طرح می باشد؛
هزینه طرح نیز از نكات حائز اهمیت در طراحی هندسی میباشد. در كل برای رسیدن به یك طرح مطلوب و بهینه میبایست هماهنگی كامل میان میعارهای فنی – معیارهای اقتصادی و عوامل محیطی صورت پذیرد.
قوسهای افقی و قائم (پیچها و خمها) دو جزء مهم طرح هندسی راه میباشند؛ قوس افقی نمایی از انحنای راه در امتداد پلان آن است در حالیكه قوس قائم مقطع طولی از راه است و فرورفتگی و برآمدگی آن را در امتداد مسیر نشان میدهد؛ قوس افقی شامل مماس (خط مستقیم) و منحنی افقی غیرمستقیم است كه دو خط مماس در طرفین را به تنهایی و یا با كمك منحنیهای اتصال به هم متصل میكند؛
قوس قائم شامل خط مستقیم مماس (مسطح- سربالایی یا سر پائینی) و یك منحنی سهمیوار گنبدی یا كاسهای است كه خطوط مماس را به هم وصل میكند؛ از دیگر موارد اساسی تشكیل دهنده اجزای طرح هندسی راه، مقطع عرضی آن میباشد كه مشخصات پهنا – شیب عرضی سواررو- شانهها- كانالها- میانه و پیادهرو را به وضوح مشخص میكند؛زمانی كه وسیله نقلیه در امتداد قوس افقی حركت میكند نیروی گریز از مركز را به سمت خارج از مركز قوس تجربه میكند كه این نیرو به طور عكس با شعاع قوس متناسب است؛ نیروهای مقاوم در برابر نیروی گریز از مركز، شامل اثر متقابل نیروی اصطكاك بین لاستیك ماشین و كف خیابان و وزن وسیلة نقلیه است كه باعث پایداری وسیله نقلیه در طول مدت حركت آن بر روی قوس افقی میشوند؛
اثر متقابل نیروی اصطكاك بین لاستیك ماشین و روسازی جاده بستگی به فاكتورهائی از قبیل وضعیت سطح جاده- شرایط آب و هوایی- مشخصات لاستیك و دینامیك وسیله نقلیه دارد؛
قسمتی از مولفه، وزن خودرو كه به طور موازی با سطح جاده عمل میكند، بستگی به میزان شیب عرضی جاده(دِوِر) دارد.
1-2- نیاز به مطالعه در مورد مسأله
در حال حاضر از مدلی به نام(PM) Point mass برای طراحی شعاع حداقل قوسهای افقی در آئیننامههای طراحی هندسی از جمله AASHTO استفاده میشود؛ در این مدل جرم وسیله نقلیه را نزدیك به جرم یك نقطه در نظر گرفته و بدون توجه به نحوة توزیع نیروی اصطكاك بین چرخهای داخلی و بیرونی و دیگر مشخصات وسیلة نقلیه طرح، نیروهای وارده بر جرم نقطهای را محاسبه و براساس آن حداقل شعاع لازم برای پایداری جرم در طول حركت روی قوس افقی را بدست میآورند؛ این روش شاید به صورت كلی جوابگوی نیازهای طراحی میباشد، اما از لحاظ علمی و باتوجه به مشخصات ویژه وسایل نقلیه و تفاوتهای زیاد بین خودروها، مناسب نمیباشد. بین كامیونها و خودروهای سواری از نظر سایز، اندازه لاستیك و مشخصات لاستیك تفاوتهای آشكاری وجود دارد؛
اگرچه اصطكاك در هر چهار چرخ اتومبیل تقریباً برابر است، اما در كامیون اصطكاك چرخها به طور گستردهای تغیر میكند؛ از طرفی یك وسیله نقلیه سنگین مثل كامیون جهت حركت روی جاده به 10% اصطكاك بیشتر نسبت به ماشینهای سواری نیازمند است؛
از معایب مدل PM این است كه آستانه غلطیدن وسایل نقلیه را مشخص نمیكند؛ آستانه غلطیدن در خودروهای سواری نسبتاً بالاست و این خودروها قبل از غلطیدن بر روی جاده میلغزند(سر میخورند)؛ اما غلطیدن در كامیونها مسأله بسیار مهمی است، زیرا اینگونه خودروها باتوجه به وضعیت و مشخصات بدنه و بار، مركز جرم بالاتری نسبت به خودروهای سواری دارند؛
مطالعات نشان داده آستانه غلطیدن در كامیونها تقریباً حدود g3/0 میباشد[48] . یعنی اگر كامیونی یك قوس افقی با شعاع 39 متر را طی میكند كه در آن سرعت طرح میباشد، شتاب جانبی وارده به وسیلة نقلیه در حدود g17/0است و این خودرو میتواند تا حد g13/0 شتاب جانبی اضافی را تحمل كند بدون اینكه واژگون شود؛
یكی دیگر از محدودیتهای مدل PM این است كه محاسبات قوسهای معكوس و مركب به تنهایی و یا در تركیب با قوسهای قائم را بیان نكرده است در صورتی كه چنین قوسهایی كاربردهای فراوانی در طبقهبندی انواع مختلف راهها و بزرگراهها دارند.
در راهنمای طرح هندسی جاری مورد استفاده برای اینگونه قوسها، تنها به رعایت حداكثر مقدار 5/1 برای نسبت بین شعاع بزرگترین و كوچكترین شعاع قوسهای معكوس و مركب اشاره شده است بدون اینكه هیچ توجهی به مشخصات و ویژگیهای وسیله نقلیه بشود؛
یكی از بزرگترین محدودیتها در طراحی حداقل شعاع قوس دایرهای این است كه این طراحیها براساس مقدار اصطكاك جانبی میباشد كه در حدود 60 سال قبل پایهریزی شده بود [8].
ملاكی كه در آن زمان وجود داشت براساس این موضوع بود كه چه میزان انحراف باعث میشود تا راننده احساس ناامنی كند و به طور غریزی از سرعت بالاتر اجتناب كند. سرعتی كه ممكن بود باعث واژگونی در قوس مورد مطالعه شود، به عنوان معیار كنترل طرح برای حداكثر میزان اصطكاك پذیرفته شده است. از مقیاس Ball-bank به عنوان مقیاس كلی برای اندازهگیری نقطة ناامنی راننده و در نتیجه واژگونی (چپ كردن)، برای تعیین سرعت ایمن در قوسها استفاده میشود؛
1-3- اثرات مهم مطالعه بر مسأله ازنظر بهبودآن
در حال حاضر در آئیننامههای طراحی هندسی موجود، مشكلات زیر موجود میباشند و در این پایاننامه سعی بر بررسی آنها خواهد بود:
1- راهنماهای طراحی هندسی موجود غالباً با قوسهای افقی معكوس یا مركب به صورت عناصر مجزا برخورد و رسیدگی میكنند و نظریات كافی و مناسب برای طراحی قوسهای پیچیده افقی ارائه نمیدهند؛
2- آئیننامههای موجود، قوسهای سهبعدی كه در آن قوسهای افقی ساده یا مركب در تركیب با قوسهای قائم قرار گرفته است را به صورت جداگانه بررسی میكند و توجه و رسیدگی كافی برای نیازهای طراحی قوسهای سهبعدی موجود نمیباشد.
1-4- اهداف و فرضیات تحقیق
1- راهنماهای طراحی و آئیننامههای موجود و تحقیقات انجام شده تاكنون جهت تعیین هدف و كمك به تحقیق پیشرو
2- استفاده از نرمافزار شبیهسازی Trucksim برای سنجیدن توانایی وسیله نقلیه سنگین (كامیون) در طول حركت بر روی تركیبات متفاوتی از اجزای طرح هندسی.
این تركیبات شامل بخشهای زیر میباشند:
الف) قوس افقی به تنهایی و بدون وابستگی به قوس قائم
ب) قوس قائم (شامل = سربالایی- سرپائینی- قوس محدب- قوس مقعر)
ج) قوس معكوس با نسبت شعاعهای متفاوت بدون تركیب با قوس قائم
د) قوس معكوس با نسبت شعاعهای با تركیبات متفاوتی از انواع قوسهای قائم (سربالایی – سرپائینی- قوس محدب – قوس معقر)
3- توسعه مسائل مدلهای ریاضی بدست آمده برای محاسبه حداقل انحنا در تركیبات مختلف قوسهای افقی- قائم (قوسهای سه بعدی)
1-5- دامنة اثر مسأله در جامعه علمی و اجتماع
انجام تحقیق پیشرو فصل تازهای در باب شبیهسازی كامپیوتری حركت وسایل نقلیه در جادههای كشور و آشنایی با زوایای مختلف شبیهساز و طرز به كارگیری و استفاده از آن توسط محققین و پژوهشگران خواهد بود. لذا میتوان با استفاده از بكارگیری نرمافزارهای موازی و شبیهسازی توسط آن نسبت به كنترل نقاط حادثهخیز و در صورت لزوم اصلاح طرح هندسی و ساختار جادههای كشور اقدام نمود.
1-6- محدودیتها و چارچوپهای پروژه
مدلسازیهای انجام شده در این رساله براساس حركت كامیونها در جادههای بیرون شهر، با ضریب اصطكاك و شیب و دیگر عوامل مختص به این جادهها میباشد و بررسی حركت این وسایل نقلیه در جادههای شهری كاری متفاوت خواهد بود. ضمناً بررسی بسیاری از عوامل انسانی موثر نظیر ظرفیت كار راننده- زمان PRT و نحوه ترمز كردن و … جز حوزة این تحقیق نمیباشد؛
همچنین فشار هوا و سایر عوامل، مثل آیرودینامیك و شرایط محیطی و آب و هوایی (برف و باران …) در این تحقیق پوشش داده نشده است.
b4%d9%86%d8%a7%d8%b3%db%8c-%d8%a7%d8%b1%d8%b4%d8%af-%d8%b1%d8%b4%d8%aa%d9%87-%d9%85%d8%b9%d8%af%d9%86-%d8%a8%d9%87%db%8c/"><img class="alignnone size-full wp-image-587296″ src="http://ziso.ir/wp-content/uploads/2020/10/thesis-paper-80.png” alt="دانلود مقاله و پایان نامه ” width="400″ height="205″ /></a></p><p><br /></p><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">3-2 روش های تجربی و تاریخچه آن ها</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">بهترین روش برای حل این مسئله که چگونه مقدار خرج را به گونه ای تخمین زد تا از سطح لرزه ایمن در یک فاصله مشخص فراتر نرویم، استفاده از ابزارهایی است که بتوان در یک محل، پارامترهای ثابت آن محل که در ارتباط با شرایط واقعی انفجار می باشد را بدست آورد. برای آنالیز لرزه ها در ارتباط با این مسئله لازم است تا ترکیب چندین فاکتور به مانند ویژگی های محل انفجار، انتشار امواج سطحی و حجمی در زمین و پاسخ سازه ها مد نظر قرار گیرد، به عبارت دیگر برای اینکه بتوان به طور مؤثری لرزه های انفجار را کنترل کرد، توسعه سیستم برداشت لرزه های انفجار و بدست آوردن مناسب خواص استهلاک لرزه های مختلف ضروری می باشد.</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">از آنجایی که حرکت زمین یکی از مهمترین اثرات محیطی عملیات انفجار می باشد، بعضی قوانین حرکت زمین در ارتباط با خسارت سازه ها توسعه پیدا کرده اند. این قوانین بر اساس سرعت ذره ای حداکثر ناشی از عملیات انفجار می باشد. برخی از دانشمندان و مهندسان بر روی پیش بینی سرعت ذره ای حداکثر تحقیق کرده و یافته هایشان را منتشر کرده اند. اولین معادله با ارززشی که سرعت ذره ای حداکثر را پیش بینی می نماید به وسیله مهندسین معدن آمریکا بدست آمده است. معادله های پیش بینی اصلاح شده ای وجود دارند که توسط برخی محققین یا انجمن ها به مانند امبراسیز و هندرون ، لانجفورس و کیلستروم ، قوش و دائمن ، روی ، سینگ و همکاران و دیگران منتشر شده است. با این حال پیش بینی سرعت ذره ای منتشره توسط انجمن مهندسان معدن آمریکا پرکاربردترین معادله در مقالات و نوشتجات می باشد.</span></p>
<p><span style="color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">پیشنهاد می شود در کار حاضر میدان جریان و دما در شرایط زیر بررسی گردد.</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">کار مشابهی که به این روش انجام شده است در مرجع [2] آمده است. این رساله شامل سه بخش اصلی میباشد، دینامیک سیالات، آکوستیک و برهمکنش بین این دو بخش. در این کار شبیهسازی عددی و اندازهگیریهای منحنی دبی سنجی التراسونیک برای هندسه های مختلف آورده شده است. شبیه سازی عددی دبیسنجی التراسونیک میتواند در فرآیندی دو مرحلهای انجام شود.</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, V
تکه هایی از متن به عنوان نمونه :
(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
چكیده
در این تحقیق نتایج حاصل از مطالعات انجام شده بر روی سازههای با سیستم جداگر لرزهای و اثر درز لرزهای بین این سازهها با ساختمانهای مجاور جهت اجتناب از برخورد آنها در زمان زلزله ارائه شده است. این تحقیق از آنرو مورد اهمیت است که، میتوان از نتایج آن برای ارزیابی تغییر فواصل مابین سازهها با در نظر گرفتن ارتفاع سازه با جداگر لرزهای به سازههای مجاور که در معرض زلزله قرار دارند، مورد استفاده قرار بگیرد. که در واقع کمکی به اتخاذ تصمیم جهت انتخاب فاصله درست به سازه مجاور میباشد. اطلاعات آماری با بررسی ساختمانهای سه، پنج، هفت وده طبقه فلزی با سیستم بادبندی و قاب خمشی به طور مجزا در معرض 20 رکورد حوزه دور بدست آمده است. هریک از ساختمانها بر اثر رکوردهای زلزله انتخاب شده مورد تحلیل قرار گرفته است. فاصله بین سازهها براساس مشخصات سازههای با جداگرلرزهای تغییر میکند تا بتوان نتایج مناسبی را ارائه دهد، لذا در ابتدا این محدوده جداگانه در اطراف سازه با جداگر لرزهای بطور مجزا در نظر گرفته شده است. پس از بدست آوردن یک محدوده مناسب با استفاده از این نتایج سازههای سه، پنج، هفت و ده طبقه در کنار سازههای قاب خمشی و بادبندی با پایه گیردار برای فواصلی که از جدول نتایج بدست آمده وتحت رکوردهای مشابهسازی شده مورد
تحلیل قرار گرفته است، تا تأثیر استفاده از محدوده در آن بررسی شود. در مجموع به منظور بررسی تأثیر برخورد بر نیاز های لرزهای سازهها با جداگر لرزهای 160 تحلیل تاریخچه زمانی غیر خطی انجام شده است. در انتهای این تحقیق با جمع بندی نتایج رابطه ای ساده و تأثیرگذار برای کاهش اثر برخورد دو سازه مجاور بدست آمد که مشخص کردن این محدوده را آسان میکند.
واژههای کلیدی: جداگر لرزهای، درز لرزهای، برخورد(کله گی)، مقیاس رکورد، زلزله حوزه دور
1 -1 مفهوم جداگر لرزهای
در ابتدا به مفهوم جداگر لرزهای که بنظر می رسد یک مفهوماصلی برای این پایان نامه باشد می پردازیم تا کمی از اصول پایه مشخص شده و بعضی از پیشرفتها و مفاهیم که در این سیستم مورد استفاده قرار میگیرد معرفی گردد. لذا در این مورد از کتاب “طراحی سازههای ضد زلزله” ]1[ کمک گرفته شد.
پیشرفت در مورد ایمنی در برابر زلزله، حدودا از زلزله 1906 سانفرانسیکو، عمدتا به سبب قبول ترازهای نیروی رو به افزایش که ساختمانها را میبایست برای تحمل آنها طراحی کرد، آغاز شد. اگرچه آییننامه ها تاکنون دستور به افزایش مداوم ترازهای نیرو دادهاند، اما یک ساختمان در مواجهه با زلزلههای شدید حتی اگر کشسان باقی بماند، با نیروهایی مواجه میشود که چند برابر ظرفیت طراحی شده آن میباشد.
ساختمانهای جدید حاوی تجهیزات بسیار حساس و گرانی هستند که در تجارت، بازرگانی، آموزش و پرورش و مراقبت بهداشتی اهمیت حیاتی دارند. بیمارستانها، مراکز ارتباط جمعی، مراکز اضطراری، ادارههای پلیس و ایستگاههای آتش نشانی میبایست در زمانی که به آنها نیاز است، یعنی پس از وقوع زلزله، امکان خدمترسانی داشته باشند. ساخت معمولی میتواند سبب ایجاد شتابهای بسیار زیاد در طبقات ساختمانهای سخت و تغییر مکانهای جانبی میان طبقه بزرگ در سازههای انعطافپذیر شود. این دو عامل در تضمین ایمنی اجزای ساختمان و محتویات آن ایجاد اشکال کنند.
تحمل وزن سازه و در عین حال محافظت آن از نیروهای القا شده بر اثر زلزله.
-طراحی و ساخت مستهلککننده های انرژی مکانیکی (جذبکننده ها)و الاستومرهای با میرایی بالا که برای کاهش حرکت در عرض بالشتک، به ترازهای عملی و قابل قبول، و مقاومت در برابر بارهای باد به کار برده میشوند.
-ابداع و پذیرش نرمافزارهای کامپیوتری برای تحلیل سازههای جداشده لرزهای که ویژگیهای غیر خطی مصالح وماهیت متغییر با زمان بارهای زلزله را در نظر میگیرد.
-توانایی در انجام آزمونهای میز لرزان با استفاده از حرکات ثبت شده واقعی زمین ناشی از زلزله، به منظور بررسی عملکرد سازهها و فراهم کردن نتایجی برای معتبر ساختن فنون مدلسازی کامپیوتری.
-ابداع و پذیرش روشهایی برای تخمین حرکات زمین خاص منطقه، ناشی از زلزله، برای دوره های مختلف بازگشت.
1-2 ملاحظات مربوط به جداسازی لرزهای
اگر هریک از موارد زیر مطرح باشد آن گاه به جداسازی لرزهای سازه نیاز است:
-افزایش ایمنی ساختمان و قابلیت بهره برداری آن پس از زلزله مطلوب باشد.
-نیروهای جانبی کاهش یافته ای برای طرح مورد نیاز باشد.
-استفاده از سازههای با ظرفیت شکلپذیری محدود (از قبیل بتن پیش ساخته )در نواحی زلزله خیزبا تغییر مکان نسبی کم مطلوب باشد.
-سازه فعلی در برابر بارهای زلزله ایمن نباشد.
برای سازههای جدید آییننامه های فعلی ساختمان در تمامی مناطق زلزله تغییر مکان بکار برده میشود و بنابراین ممکن است بسیاری از طراحان احساس کنند که چون الزامات آییننامه با طرحهای فعلی برآورد شود لذا به جداسازی لرزهای نیاز نیست اما الزامات توصیه شده درباره نیروی جانبی که انجمن مهندسان سازه کالیفرنیا (SEAOC)]39[تهیه کرده است، بیان میداردکه ساختمانهایی که مطابق با ضوابط این آییننامه طراحی میشوند باید:
-بدون آسیب دیدگی در مقابل زلزلههای خفیف مقاومت کنند.
-بدون آسیب دیدگی سازهای، اما با مقداری آسیب غیر سازهای، در مقابل زلزلههای متوسط مقاومت کنند.
-بدون خرابی اما با آسیب دیدگی سازهای و غیر سازهای در مقابل زلزلههای بزرگ مقاومت کنند.
این اصول عملکردی در مورد ساختمانهایی که با نیروهای طرح تراز آییننامه بازسازی میشوند، نیز صادق است.
جداسازی لرزهای توانایی در ساختن ساختمانی با مشخصه های عملکردی بهتر از آنچه آییننامه فعلی می گوید را نوید میدهد و لذا گام بزرگی به جلو در طراحی لرزهای سازههای مهندسی به شمار می رود. در هنگام تقویت ساختمان، نیاز به جداسازی الزامی است، و ممکن است سازه در وضعیت فعلی خود، در صورتی که زلزله رخ دهد، ایمن نباشد. در چنین حالاتی، اگر جداسازی لرزهای مناسب باشد، میبایست میزان موثر بودن آن، در مقایسه با راهحلهای دیگر از قبیل تقویت کردن ساختمان، ارزیابی شود.
1-3 راهحلهایی برای آسیب غیر سازهای
دو مکانیزم اصلی برای ایجاد آسیب غیر سازهای وجود دارد. اولی مربوط به تغییر مکان جانبی بین طبقهای و دومی مربوط به شتابهای طبقات است. تغییر مکان جانبی بین طبقهای به صورت جابجایی نسبی بین دو طبقه تقسیم بر ارتفاع طبقه تعریف میشود. شتابهای طبقات، شتابهای مطلقی هستند که در نتیجه وقوع زلزله ایجاد میشوند و در ساخت متعارف معمولا با افزایش ارتفاع ساختمان افزایش می یابند.
دو فلسفه طراحی مختلف در مهندسی سازه، برای کم کردن آسیب دیدگی غیر سازهای مورد بحث است. یک دسته چنین استدلال میکنند که ساختمانهای سخت بهترین راهحل هستند. ساختمانهای سخت تغییر مکانهای جانبی بین طبقهای را کاهش میدهند، ولی شتابهای زیادی در طبقات ایجاد میکنند. دسته مقابل استدلال میکنند که ساختمانهای انعطافپذیرراهحلمیباشد، زیرا نیروی کمتری را جذب میکنند و شتابهای طبقات را کاهش میدهند. اگرچه این مطلب درست است، ولی ساختمانهای انعطافپذیر تغییر مکانهای جانبی بین طبقهای بزرگتری دارند و در نتیجه اجزایی که به تغییر مکان جانبی حساساند، شدیدتر آسیب میبینند.
آشکار است که اگر هم تغییر مکان جانبی بین طبقهای و هم شتابهای طبقات را کاهش دهیم، بهترین تلفیق این دو فلسفه طراحی است. جداسازی لرزهای چنین مفهومی است(شکل1-2)، زیرا این عامل هم شتابهای طبقات و هم تغییر مکان جانبی بین طبقهای را به میزانی چشمگیر کاهش میدهد و لذا راهحل اقتصادی وعملی برای مسئله دشوار کاهش آسیب غیر سازهای ناشی از زلزله است.
اجزای اصلی سیستمهای جداساز لرزهای
سه جز اصلی در هر سیستم عملی جداسازی لرزهای وجود دارد، اینها عبارتند از:
-یک پایه انعطافپذیر به طوری که زمان تناوب ارتعاش کل سیستم به قدر کافی برای کاهش پاسخ نیرو طولانی شود.
-یک میراگر یا مستهلککننده انرژی به طوری که تغییر مکان نسبی بین ساختمان و زمین را بتوان تا تراز عملی طرح کنترل کرد.
-وسیلهای برای تامین صلبیت تحت ترازهای بار (بهره برداری) کم از قبیل باد و زلزلههای خفیف.
سالهای متمادی است که سازههای پل بر روی بالشتکهای ارتجاعی]2[ قرار داده میشوند، و در نتیجه تاکنون با پایه انعطافپذیر طراحی شده اند. این امکان هست که بتوان ساختمان را بر روی بالشتکهایی ارتجاعی قرار داد. در عین حال که ممکن است اعمال انعطافپذیری جانبی بسیار مطلوب باشد، انعطافپذیری قائم مطلوب نیست. صلبیت قائم با ساختن بالشتکهای لاستیکی در چند لایه و قرار دادنورق فولادی در بین لایه ها ایجاد میشود. ورقهای فولاد که به هر لایه از لاستیک چسبیده میشوند، تغییر شکل جانبی لاستیک تحت بار قائم را محدود میکنند(شکل1-3). این عمل منجر به ایجاد سختی قائمی چند صد برابر سختی جانبی میشود که میزان بزرگی آن با ستونهای متعارف برابر است.
erdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">1- شبیه سازی میدان جریان درون دبی سنج با استفاده از نرم افزار دینامیک سیالات محاسباتی تجاری</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">2- شبیه سازی پیش روی صوت در دبی سنج به کمک روابط سرعت صوت در جریان</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">1-1- دبی سنج ها</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">انواع گوناگونی از دبی سنج ها وجود دارد. انواع قوانیین فیزیکی مربوط به حرکت سیال در کانال برای اندازه گیری دبی سیال استفاده شده است. این روش ها عبارتند از:</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">روش های مکانیک که سیال را به بخش هایی با مقدار مشخص تقسیم می کنند (ابزارهای اندازه گیری جابجایی مثبت)</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">اندازه گیری های فشاری (ابزارهای اختلاف فشار)</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">برهم کنش میدان های الکترومغناطیس یا صوتی با سیال در جریان (دبی سنج های الکترومغناطیس و زمان عبور التراسونیک)</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">اندازه گیری های مربوط به اینرسی (ابزارهای کوریولیس)</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">برهم کنش جریان و پره های متحرک یا موانع ثابت (توربین و گردابه و روتامتر)</span></p><p><p><a href="http://abisho.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%da%a9%d8%a7%d8%b1%d8%b4%d9%86%d8%a7%d8%b3%db%8c-%d8%a7%d8%b1%d8%b4%d8%af-%d8%b1%d8%b4%d8%aa%d9%87-%d9%85%da%a9%d8%a7%d9%86%db%8c%da%a9-%d8%ad-2/"><img class="alignnone size-full wp-image-587319″ src="http://ziso.ir/wp-content/uploads/2020/10/thesis-paper-103.png” alt="دانلود مقاله و پایان نامه ” width="400″ height="172″ /></a></p><p><br /></p><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">تشخیص سرعت ذرات معلق در جریان (دبی سنج های التراسونیک داپلر)</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">البته شاید دقیق ترین روش های اندازه گیری حجم مایع نیازمند تکنولوژی بسیار ساده برای اندازه گیری کمیت های اساسی: مقیاس ها، دماسنج و دانستن چگونگی تغییرات چگالی سیال با دماست. برای اندازه گیری های آنی، هنگامی که نمی توان جریان سیال را دستکاری کرد، دقیق ترین روش با استفاده از دبی سنج های “جابجایی مثبت” به دست می آید. اما این طراحی ها به دلیل ضعف های مربوط به اینرسی قطعات مکانیکی متحرک محدوده اندازه گیری دبی کوچکی دارند و کمتر استفاده می شوند.</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">بسیاری طراحی های جایگزین دبی سنج، کمیتی را که کاملاً وابسته به حرکت سیال در لوله است را اندازه نمی گیرند. اغلب تنها نمونه ای از میدان جریان کامل با فرض اینکه این بخش کاملاً بیان گر حرکت متوسط است اندازه گیری می شود. از این رو عملکرد دقیق در آزمایشگاه در خلال کالیبره کردن می تواند به طور چشمگیری در اثر تغییر شرایط ورودی جریان از حالت ایده آل تغییر کند.</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">1-1-1- دبی سنج های التراسونیک</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">دبی سنج های التراسونیک پتانسیل اندازه گیری دقیق حجم سیال را در بازه گسترده ای از دبی با استفاده از هندسه ساده را بدون استفاده از قطعات متحرک می دهند. یک دبی سنج التراسونیک ایده آل اندازه گیری های دقیقی مستقل از تأثیرات خارجی، مانند زمان، دما، دبی و شرایط نصب خواهد داد.</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">1-1-2- یک دبی سنج التراسونیک ایده آل</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">1-1-2-1- مستقل از نصب</span><br style="box-sizing: border-box; color: rgb(51, 51, 51); font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);” /><span style="box-sizing: border-box; font-family: Yekan, Tahoma, Verdana, Helvetica, Arial, sans-serif; font-size: medium; text-align: start; background-color: rgb(255, 255, 255);">دبی سنج های التراسونیک، در مقایسه با ابزارهای سنتی، مزایایی از جمله نسبت بالای خاموشی و قیمت کم ابزارهای الکترونیکی بدون قطعه متحرک را دارند. البته مشابه بسیاری ابزارها، نصب دقیق این تجهیزات برای جلوگیری از تأثیر پذیری از جریان های ورودی غیر ایده آل با توجه به حضور شیرهای نیمه بسته و یا خم هایی در بالادست جریان ضروری است. یک ابزار ایده آل عملکردی مستقل از شرایط نصب یعنی شرایط جریان ورودی دارد. خطاهایی در محدوده 1 تا 5 درصد برای دبی سنج های التراسونیکی که به اندازه 10 برابر قطر در پایین دست اتصالات نصب شده اند و خطاهای بالاتر 33 درصد در حالت بدتر برای دبی سنج التراسونیک بلافاصله پایین دست شیر نیمه باز ثبت شده است. رابطه بین این تغییرات در عملکرد دبی سنج و پروفیل دبی ورود پیچیده است و بسیار کم شناخته شده است زیرا برهم کنش اساسی بین جریان و امواج فراصوت در لوله وجود دارد.</span></p>
انحراف جریان یا به طور طبیعی بصورت شریان و ایجاد میانبردر رودخانههای مئاندری بوجود میآید و یا آنكه بطور مصنوعی بصورت آبگیری از رودخانهها و كانالها جهت مصارف كشاورزی، آبرسانی شهری و یا صنعتی ایجاد میشود. الگوی جریانهای انحرافی كاملاً سه بعدی و غیر یكنواخت میباشد و باعث ایجاد نواحی تقسیم خطوط جریان، جداشدگی و جریان برگشتی میشود. این جداشدگی و جریان برگشتی نیز یكسری جریانهای گردابی و چرخشی را در این نواحی ایجاد میكند كه این عوامل قابل توجه مهندسین هیدرولیك و محققینی كه در ارتباط با تغییرات ریختشناسی رودخانه ها و حركت ذرات رسوبی بستر مطالعه میكنند، میباشد.
از آنجا كه رودخانه یك سیستم دینامیك بوده و پیوسته در حال تغییر است باید این تغییرات بررسی شده و رفتار رودخانه قابل پیشبینی باشد.برای انحراف رودخانه باید مواردی از جمله مشخصات جریان، وضعیت انتقال رسوب و مشخصات آبراهه مورد بررسی قرار گیرد. همچنین در صورت وجود آبگیرهای جانبی تغییرات در هیدرودینامیك جریان ایجاد میشود و لازم است بررسیهایی بر روی جریان ثانویه ایجاد شده در اطراف دهانه آبگیر كه نحوه آبشستگی و رسوبگذاری در امتداد آبگیر را نشان میدهد و تحلیل جریان در محدوده آبگیر
صورت گیرد.
به همین منظور در اینجا لزوم مطالعات كامل تر بر روی آبگیرهای جانبی مطرح شده كه در این موارد بررسی تأثیر موقعیت آبگیر در كاناهای قوسی و همچنین نوع جریان در كانال اصلی بر روی الگوی جریان لازم بنظر میرسد.
فصل اول: کلیات
1-1) هدف
از دیر باز مسئله انحراف آب از مسیر اصلی رودخانه برای انجام مقاصد مختلف از آن جمله برای كشاورزی، آبرسانیشهری ، صنایع و تولید برق و غیره مورد توجه قرار داشته كه می توان ادعا كرد، قدمت آن به قدمت تمدن بشر می رسد. همواره مسئله مهم در انتقال آب، مشكل ورود رسوبات به كانالها و سیستمهای انتقال می باشد. بنابراین هدف طراحان كاهش میزان ورود رسوبات انتقال یافته تا حد امكان می باشد(صالحی نیشابوری و ایزدپناه، 1385).
آبگیری از رودخانه یكی از قدیمی ترین مسائل مطرح در زمینه مهندسی هیدرولیك است با این وجود طراحی یك سازه آبگیر در یك رودخانه امری ظریف و حساس به شمار می رود. طراحی اصلی در انحراف آب تعیین مقدار آب مورد نیاز در زمان مشخص ((QD(t) می باشد میزان آبگیری بستگی به جریان نسبی در زمان مشخص داشته كه نباید مقدار آن بیشتر از جریان رودخانه باشد . همچنین باید از ورود رسوبات و آشغالهای شناور جلوگیری شود . (درصورتیكه از لوله های تحت فشار یا تونل برای آبرسا نی استفاده شود باید از ورود هوا جلوگیری شود ) همچنین طراح باید اثرات موفولوژیكی كه موجب كاهش جریان پایین – دست و اثرات ناسازگاری محیط زیست كه باعث تغییر در سطح آب های زیرزمینی، برگشت آب، تغییرات آب، سرعت جریان و دما می شود را به حداقل برساند . كاهش عمق جریان و سرعت جریان پایین دست آبگیر باعث افزایش دمای آب شده، این امر زندگی آبزیان را تهدید می كند. به حداقل رساندن عمق آب در پاییندست محل آبگیری برای حفاظت حیوانات آبزی در رودخانه ها حائز اهمیت است.
انواع آبگیر از لحاظ سازه ای عبارتند از:
– آبگیر بدون استفاده از بند
– آبگیر همراه با بند انحرافی
– یكی از دو موارد فوق به همراه تاسیسات جانبی نظیر پمپاژ
:
با مطالعه آنچه در کشورهای جهان میگذر د، به نظر می رسد یکی از عوامل مهم در ایمن سازی شهرها و روستاهای یک کشور، فرهنگ ساخت و ساز آن کشور و مد یریت بر آن می باشد. چه چیزی باعث شده آمار تعداد کشته شدگان در زلزله های ژاپن از سال 1923 میلادی (زلزله کانتو ژاپن بیش از 140 هزار کشته) تا امروز (تعداد انگشت شمار کشته در زلزله های اخیر ژاپن) با این شدت کاهش بیابد؟ این توفیق، عمدتا در نتیجه یک تحول اساسی د ر فرهنگ ساخت و ساز ژاپن در طی دهه های اخیر بوده است. البته ابزارهائی نظیر تکنولوژی، توسعه مهندسی و مواردی از این قبیل به مسئولین و شهروندان کمک میکند تا الگوهای فعلی خود را در امر ساخت و ساز بهبود ببخشند. نمودار 1 نشان می دهد تدوین آئین نامه ها و اصلاح آنها نه این که مهم نیست، ولی به تنهائی تاثیر قابل ملاحظه ای در آمار کشته شدگان ناشی از زلزله نخواهد داشت.
بر اساس گزارش جهانی “کاهش ریسک بلایا، چالش توسعه ” که در سال 2003 توسط برنامه عمران ملل متحد منتشر شد، ایران دومین کشور جهان از لحاظ مرگ و میر ناشی از زلزله است.
لذا رویکرد صنعتی به ساختمان سازی به عنوان یکی از مهمترین راهکارهای تغییر فرهنگ از دست رفته در بخش ساخت و ساز کشور میباشد که باید در دستور کار مسئولین، اساتید، دانشجویان و شرکت های مرتبط با بخش ساختمان قرار گیرد . در این پایان نامه هدف رسیدن به راهکار مطمئن و اقتصادی برای تولید صنعتی شالوده ساختمان ها است به نحوی که نیروی کار غیر مجرب که در روستاهای کشور خصوصا مشغول به ساخت ساختمان هستند، کمترین دخالت را در این موضوع داشته باشند.
فصل اول
کلیات
1-1- فرهنگ غالب ساخت و ساز شالوده در منطقه مورد تحقیق
در این بخش به استناد تصویر هائی که در بازدیدهای محلی از ساخت و ساز مرسوم در روستاهای کشور ثبت شده است، فرهنگ موجود در این زمینه را به بحث میگذاریم (با تکیه بر اجرای فونداسیون و شالوده). این تصاویر از مناطقی گرفته شده است که پروژه حاضر قصد دارد روش جایگزینی برای اجرای شالوده در این مناطق پیشنهاد و بررسی کند.
الف- سنگدانه های مصرفی برای بتن
طبق آئین نامه بتن ایران به کار بردن سنگدانه های با اندازه بزرگتر از 38 میلیمتر در بتن توصیه نمی شود (تبصره 2 بند 3-4-4- آبا). لکن در برخی موارد مشاهده شده است که در دانه بندی سنگدانه های مورد استفاده در بتن شالوده ها ب ه علت عدم کنترل و آگاهی مجریان، سنگدانه هائی با اندازه تا 50 میلیمتر هم استفاده شده است که در تصویر ذیل نمونه ای از این موارد به تصویر کشیده شده است.
با توجه تاکید آئین نامه بتن ایران بر استفاده از سنگدانه های با کیفیت که منجر به تولید بتن مقاوم و پایا گردد، و با وجود آئین نامه های مختلف بین المللی نظیر ASTM و همچنین آئین نامه های داخلی برای کنترل و اس تفاده از دانه بندی و کیفیت مناسب سنگدانه های مصرفی، استفاده از دانه بندی نظیر آنچه در شکل ذیل مشاهده میشود در ساخت بتن شایسته به نظر نمی رسد.
با توجه به اینکه در تعیین دانه بندی استاندارد فرض بر این است که سنگدان ها شکلی نزدیک به یک کره منظم دارند ، و از طرفی تاثیر زیاد شکل سنگدانه بر خواص فیزیکی بتن تازه و سخت شده، آئین نامه ها استفاده از سنگدانه ها ئی با شکل کشید ه و یا به صورت ورقی (سوزنی و پولکی ) را محدود کرده اند . لکن در ساخت و ساز های متداول در روستاهای کشورمان هنوز مشاهده میشود که مقدار این نوع سنگدانه غیر استاندارد در دانه بندی سنگدانه های مورد استفاده برای بتن ریزی زیاد است.
طبق آئین نامه بتن ایران میزان دانه های رد شده از الک 200 (0/075 میلیمتر) نباید بیشتر از 5 درصد باشد و اگر این دانه ها از جنس رس باشد این مقدار باید به 3 درصد وزن کل سنگدانه ها محدود گردد . در اغلب سنگدانه های مصرفی در بتن وجود خاك و گرد های سنگ که از الک 200 عبور میکنند به چشم میخورد . در روستاهای کشور سنگدانه های مصرفی اغلب دارای مقادیر زیاد خاك و دانه های بسیار ریز می باشد که این موضوع علاوه بر کاهش مق اومت بتن سخت شده، خواص بتن تازه را به شدت تحت تاثیر قرار داده و بتن حاصل به علت کاهش کارائی خوب متراکم نمی گردد.